
Introduction to Statistics and Data Science

Elizabeth Tipton Arend M Kuyper Danielle Sass
Kaitlyn G. Fitzgerald Adapted from ModernDive by

Chester Ismay and Albert Y. Kim

2024-04-11



Table of contents

Welcome 11
License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Preface 12
Introduction for students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

What you will learn from this book . . . . . . . . . . . . . . . . . . . . . . . . . 13
Data/science pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Reproducible research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Getting started 17

1 Getting Started with Data in R 18
1.1 What are R and RStudio? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Using RStudio Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.2 Installing R and RStudio on your personal computer . . . . . . . . . . . 20
1.1.3 Using R via RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 How do I code in R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Creating your first Quarto document . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Basic programming concepts and terminology . . . . . . . . . . . . . . . 23
1.2.3 Errors, warnings, and messages . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Tips on learning to code . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 What are R packages? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Package installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Package loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Package use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Explore your first dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1 nycflights13 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.2 flights data frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.3 Exploring data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.4 Help files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5.1 Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.6.1 Exercises explained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



1.6.2 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6.4 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

II Data Exploration via the tidyverse 40

2 Data Visualization 41
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1 The Grammar of Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Components of the Grammar . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Gapminder data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.3 Other components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.4 ggplot2 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Five Named Graphs - The 5NG . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3 5NG#1: Scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Scatterplots via geom_point . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Over-plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 5NG#2: Linegraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.1 Linegraphs via geom_line . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 5NG#3: Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.1 Histograms via geom_histogram . . . . . . . . . . . . . . . . . . . . . . 60
2.5.2 Adjusting the bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6 Facets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7 5NG#4: Boxplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.7.1 Boxplots via geom_boxplot . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.8 5NG#5: Barplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.1 Barplots via geom_bar or geom_col . . . . . . . . . . . . . . . . . . . . 77
2.8.2 Must avoid pie charts! . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.8.3 Two categorical variables . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.9.1 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.9.2 Argument specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.9.3 Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.9.4 What’s to come . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.10.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.10.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3



2.10.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3 Data Wrangling 97
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.1 The pipe operator: %>% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 filter() rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3 summarize() variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4 group_by() rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4.1 Grouping by more than one variable . . . . . . . . . . . . . . . . . . . . 110
3.5 mutate existing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.6 arrange() and sort rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.7 join data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.7.1 Matching “key” variable names . . . . . . . . . . . . . . . . . . . . . . . 119
3.7.2 Different “key” variable names . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.3 Multiple “key” variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.7.4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8 Other verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.8.1 select() variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.8.2 rename() variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.8.3 slice() data by a variable . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9.1 Summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9.2 Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9.3 What’s to come? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.10.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.10.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.10.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 Data Importing & “Tidy Data” 133
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.1 Importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.1.1 Using the console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.1.2 Using RStudio’s interface . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2 Tidy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.1 Definition of “tidy” data . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.2 Converting to “tidy” data . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.2.3 nycflights13 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3 Case study: Democracy in Guatemala . . . . . . . . . . . . . . . . . . . . . . . 146
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.4.1 tidyverse package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.4.2 Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.4.3 What’s to come? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4



III Data Modeling 153

5 Basic Regression 154
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1 One numerical explanatory variable . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.1.2 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.1.3 Observed/fitted values and residuals . . . . . . . . . . . . . . . . . . . . 171

5.2 One categorical explanatory variable . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.2.3 Observed/fitted values and residuals . . . . . . . . . . . . . . . . . . . . 187

5.3 Related topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.3.1 Correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.3.2 Correlation is not necessarily causation . . . . . . . . . . . . . . . . . . 188
5.3.3 Best-fitting line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.4.1 Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.4.2 What’s to come? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.5.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.5.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.5.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6 Multiple Regression 199
Needed packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.1 Two numerical explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . 200
6.1.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.1.2 Regression plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.1.3 Observed/fitted values and residuals . . . . . . . . . . . . . . . . . . . . 208

6.2 One numerical & one categorical explanatory variable . . . . . . . . . . . . . . 209
6.2.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.2.2 Interaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.3 Parallel slopes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.2.4 Observed/fitted values and residuals . . . . . . . . . . . . . . . . . . . . 221

6.3 Related topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.3.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.3.2 Correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.3.3 Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.4.1 What’s to come? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.5.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5



6.5.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.5.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

IV Statistical Theory 235

7 Randomization and Causality 236
Needed Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.1 Causal Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.2 Randomized experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.2.1 Random processes in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.3 Omitted variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.4 The magic of randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

7.4.1 Randomization Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.4.2 Estimating the treatment effect . . . . . . . . . . . . . . . . . . . . . . . 243

7.5 If you know Z, what about multiple regression? . . . . . . . . . . . . . . . . . . 246
7.6 What if you don’t know Z? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

7.8.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.8.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
7.8.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

8 Populations and Generalizability 253
Needed packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.1 Terminology & Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.2 Populations & Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.3 Movies Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

8.3.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.3.2 Population of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.3.3 Development of population frame . . . . . . . . . . . . . . . . . . . . . . 258
8.3.4 Sampling plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8.4 Samples from Unclear Populations . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.5 Causality vs. Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

8.6.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.6.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.6.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9 Sampling Distributions 270
Needed packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.1.1 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

6



9.1.2 Empirical Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9.1.3 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.1.4 T-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
9.1.5 Normal vs T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.1.6 Chi-squared Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 282

9.2 Repeated Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.2.1 Theory of Repeated Samples . . . . . . . . . . . . . . . . . . . . . . . . 283
9.2.2 Sampling Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.2.3 Computer simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

9.3 Properties of Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . . . 299
9.3.1 Mean of the sampling distribution . . . . . . . . . . . . . . . . . . . . . 300
9.3.2 Standard deviation of the sampling distribution . . . . . . . . . . . . . . 304
9.3.3 Confusing concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

9.4 Common statistics and their theoretical distributions . . . . . . . . . . . . . . . 307
9.4.1 Standard Errors based on Theory . . . . . . . . . . . . . . . . . . . . . . 307

9.5 Sample Size and Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . 308
9.5.1 Sampling balls with different sized shovels . . . . . . . . . . . . . . . . . 309

9.6 Central Limit Theorem (CLT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.6.1 CLT conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.6.2 CLT example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

9.8.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9.8.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
9.8.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

V Statistical Inference 322

10 Confidence Intervals 323
Needed Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

10.1 Combining an estimate with its precision . . . . . . . . . . . . . . . . . . . . . 323
10.1.1 Sampling distributions of standardized statistics . . . . . . . . . . . . . 324
10.1.2 Confidence Interval with the Normal distribution . . . . . . . . . . . . . 325
10.1.3 General Form for Constructing a Confidence Interval . . . . . . . . . . . 327
10.1.4 Finding critical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
10.1.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

10.2 Interpreting a Confidence Interval . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.3 Margin of Error and Width of an Interval . . . . . . . . . . . . . . . . . . . . . 338
10.4 Example: One proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

10.4.1 Observed Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
10.5 Example: Comparing two proportions . . . . . . . . . . . . . . . . . . . . . . . 340

10.5.1 Compute the point estimate . . . . . . . . . . . . . . . . . . . . . . . . . 342

7



10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.6.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.6.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
10.6.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

11 P-values 347
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

11.1 Stochastic Proof by Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . 347
11.2 Repeated samples, the null hypothesis, and p-values . . . . . . . . . . . . . . . 348

11.2.1 Null hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
11.2.2 P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

11.3 P-value and Null Distribution Example . . . . . . . . . . . . . . . . . . . . . . 350
11.3.1 IMDB data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
11.3.2 p-values using formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
11.3.3 p-values using t.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.3.4 p-values using regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

11.4 Example: Ride-share prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.4.1 Using formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.4.2 Using t.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
11.4.3 Using regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

11.5 Interpretation of p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

11.6.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
11.6.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
11.6.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

12 Hypothesis tests 364
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

12.1 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
12.2 Decision making trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

12.2.1 Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
12.2.2 Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
12.2.3 Commonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

12.3 Hypothesis test: Decision making in statistics . . . . . . . . . . . . . . . . . . . 368
12.4 Conducting Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

12.4.1 Promotions Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
12.4.2 Movies example revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 376
12.4.3 Ride share example revisited . . . . . . . . . . . . . . . . . . . . . . . . 379

12.5 One-tailed hypothesis tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
12.5.1 Ride share example revisited again . . . . . . . . . . . . . . . . . . . . . 380
12.5.2 Formulating the Hypotheses Overview . . . . . . . . . . . . . . . . . . . 381

12.6 More advanced points to consider . . . . . . . . . . . . . . . . . . . . . . . . . . 383
12.7 American Statistical Association (ASA) Statistical Standards . . . . . . . . . . 384

8



12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
12.8.1 Conceptual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
12.8.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
12.8.3 Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

13 Putting it all together 389
Packages Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

13.1 A general process for using statistics . . . . . . . . . . . . . . . . . . . . . . . . 389
13.2 Example: Treatment effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
13.3 Example: Estimate a proportion . . . . . . . . . . . . . . . . . . . . . . . . . . 392
13.4 Example: Estimate the relationship between two variables . . . . . . . . . . . . 394
13.5 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

References 398

Appendices 399

A Statistical Background 399
A.1 Common statistical terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

A.1.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
A.1.2 Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
A.1.3 Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
A.1.4 Five-number summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
A.1.5 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
A.1.6 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

B Exercise solutions 401
B.1 Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
B.2 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
B.3 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
B.4 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
B.5 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
B.6 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
B.7 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
B.8 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
B.9 Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
B.10 Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
B.11 Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
B.12 Chapter 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

C Learning check solutions 439
C.1 Chapter 1 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
C.2 Chapter 2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

9



C.3 Chapter 3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
C.4 Chapter 4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
C.5 Chapter 5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

10



Welcome

This is the website for Introduction to Statistics and Data Science. This book starts
you down the path of learning how to think with data using R. You’ll learn the basics of how
to engage, explore, and examine many types of data arising from several contexts. Hopefully
you’ll have fun and see how valuable it is to be able to critically think with data.

Warning

Please note that this is a “development version” of this book for the new design of STAT
202. Meaning this is a work in progress being edited and updated as we go.
We would appreciate any feedback on typos and errors.

This open textbook is produced with support from Northwestern University Libraries and The
Alumnae of Northwestern University.

License

This website is (and will always be) free to use, and is licensed under the Creative Commons
Zero v1.0 Universal License. If you’d like to give back, please consider reporting a typo or
leaving a pull request at github.com/NUstat/intro-stat-data-sci.

11

https://www.library.northwestern.edu/
https://www.nualumnae.org/
https://www.nualumnae.org/
https://www.library.northwestern.edu/
https://www.nualumnae.org/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/NUstat/intro-stat-data-sci


Preface

Help! I’m new to R and RStudio and I need to learn about them! However, I’m completely
new to coding! What do I do?

If you’re asking yourself this question, then you’ve come to the right place! Start with our
“Introduction for Students”.

Introduction for students

This book assumes no prerequisites: no algebra, no calculus, and no prior programming/coding
experience. This is intended to be a gentle introduction to the practice of analyzing data and
answering questions using data the way statisticians, data scientists, data journalists, and
other researchers would.

In Figure 1 we present a flowchart of what you’ll cover in this book. You’ll first get started
with data in Chapter 1, where you’ll learn about the difference between R and RStudio, start
coding in R, understand what R packages are, and explore your first dataset: all domestic
departure flights from a New York City airport in 2013. Then

1. Data Exploration: You’ll assemble your data science toolbox using tidyverse pack-
ages. In particular:

• Ch. 2: Visualizing data via the ggplot2 package.
• Ch. 3: Wrangling data via the dplyr package.
• Ch. 4: Understanding the concept of “tidy” data as a standardized data input

format for all packages in the tidyverse

2. Data Modeling: Using these data science tools, you’ll start performing data modeling.
In particular:

• Ch. 5: Constructing basic regression models.
• Ch. 6: Constructing multiple regression models.

12

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/


3. Statistical Theory: Now you’ll learn about the role of randomization in making infer-
ences and the general frameworks used to make inferences in statistics. In particular:

• Ch. 7: Randomization and causality.
• Ch. 8: Populations and generalizability.
• Ch. 9: Sampling distributions.

4. Statistical Inference: You’ll learn to combine your newly acquired data analysis and
modeling skills with statistical theory to make inferences. In particular:

• Ch. 10: Building confidence intervals.
• Ch. 11: Calculating p-values.
• Ch. 12: Conducting hypothesis tests.

Figure 1: Course Flowchart

What you will learn from this book

We hope that by the end of this book, you’ll have learned

1. How to use R to explore data.

13



2. How to generate research questions and hypotheses.
3. How to think like a statistician and the role of chance in your data.
4. How to answer statistical questions using tools like confidence intervals and hypothesis

tests.
5. How to effectively create “data stories” using these tools.

What do we mean by data stories? We mean any analysis involving data that engages the
reader in answering questions with careful visuals and thoughtful discussion, such as How
strong is the relationship between per capita income and crime in Chicago neighborhoods?
and How many f**ks does Quentin Tarantino give (as measured by the amount of swearing
in his films)?. Further discussions on data stories can be found in this Think With Google
article.

For other examples of data stories constructed by students like yourselves, look at the final
projects for two courses that have previously used a version of this book:

• Middlebury College MATH 116 Introduction to Statistical and Data Sciences using stu-
dent collected data.

• Pacific University SOC 301 Social Statistics using data from the fivethirtyeight R pack-
age.

This book will help you develop your “data science toolbox”, including tools such as data
visualization, data formatting, data wrangling, and data modeling using regression. With
these tools, you’ll be able to perform the entirety of the “data/science pipeline” while building
data communication skills.

In particular, this book will lean heavily on data visualization. In today’s world, we are
bombarded with graphics that attempt to convey ideas. We will explore what makes a good
graphic and what the standard ways are to convey relationships with data. You’ll also see the
use of visualization to introduce concepts like mean, median, standard deviation, distributions,
etc. In general, we’ll use visualization as a way of building almost all of the ideas in this book.

To impart the statistical lessons in this book, we have intentionally minimized the number of
mathematical formulas used and instead have focused on developing a conceptual understand-
ing via data visualization, statistical computing, and simulations. We hope this is a more
intuitive experience than the way statistics has traditionally been taught in the past and how
it is commonly perceived.

Finally, you’ll learn the importance of literate programming. By this we mean you’ll learn how
to write code that is useful not just for a computer to execute but also for readers to understand
exactly what your analysis is doing and how you did it. This is part of a greater effort to
encourage reproducible research (see subsection Reproducible research for more details). Hal
Abelson coined the phrase that we will follow throughout this book:

“Programs must be written for people to read, and only incidentally for machines
to execute.”

14

http://rpubs.com/ry_lisa_elana/chicago
http://rpubs.com/ry_lisa_elana/chicago
https://ismayc.github.io/soc301_s2017/group_projects/group4.html
https://ismayc.github.io/soc301_s2017/group_projects/group4.html
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/tell-meaningful-stories-with-data/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/tell-meaningful-stories-with-data/
https://rudeboybert.github.io/MATH116/PS/final_project/final_project_outline.html#past_examples
https://ismayc.github.io/soc301_s2017/group-projects/index.html
https://cran.r-project.org/web/packages/fivethirtyeight/vignettes/fivethirtyeight.html
https://cran.r-project.org/web/packages/fivethirtyeight/vignettes/fivethirtyeight.html


We understand that there may be challenging moments as you learn to program. We still
continue to struggle and find ourselves often using web searches to find answers and reach
out to colleagues for help. In the long run though, we all can solve problems faster and
more elegantly via programming. We wrote this book as our way to help you get started and
you should know that there is a huge community of R users that are always happy to help
everyone along as well. This community exists in particular on the internet on various forums
and websites such as stackoverflow.com.

Data/science pipeline

You may think of statistics as just being a bunch of numbers. We commonly hear the phrase
“statistician” when listening to broadcasts of sporting events. Statistics (in particular, data
analysis), in addition to describing numbers like with baseball batting averages, plays a vital
role in all of the sciences. You’ll commonly hear the phrase “statistically significant” thrown
around in the media. You’ll see articles that say “Science now shows that chocolate is good
for you.” Underpinning these claims is data analysis and a theoretical model relating the data
collected in a sample to a larger population. By the end of this book, you’ll be able to better
understand whether these claims should be trusted or whether we should be wary. Inside data
analysis are many sub-fields that we will discuss throughout this book (though not necessarily
in this order):

• data collection
• data wrangling
• data visualization
• data modeling
• statistical inference
• correlation and regression
• interpretation of results
• data communication/storytelling

These sub-fields are summarized in what Grolemund and Wickham term the “Data/Science
Pipeline” in Figure 2.

We will begin by digging into the gray Understand portion of the cycle with data visualization,
then with a discussion on what is meant by tidy data and data wrangling, and then conclude
by talking about interpreting and discussing the results of our models via Communication.
These steps are vital to any statistical analysis. But why should you care about statistics?
“Why did they make me take this class?”

There’s a reason so many fields require a statistics course. Scientific knowledge grows through
an understanding of statistical significance and data analysis. You needn’t be intimidated by
statistics. It’s not the beast that it used to be and, paired with computation, you’ll see how
reproducible research in the sciences particularly increases scientific knowledge.

15

https://stackoverflow.com/
http://r4ds.had.co.nz/explore-intro.html
http://r4ds.had.co.nz/explore-intro.html


Figure 2: Data/Science Pipeline

Reproducible research

“The most important tool is the mindset, when starting, that the end product will
be reproducible.” – Keith Baggerly

Another goal of this book is to help readers understand the importance of reproducible analyses.
The hope is to get readers into the habit of making their analyses reproducible from the very
beginning. This means we’ll be trying to help you build new habits. This will take practice
and be difficult at times. You’ll see just why it is so important for you to keep track of your
code and well-document it to help yourself later and any potential collaborators as well.

Copying and pasting results from one program into a word processor is not the way that
efficient and effective scientific research is conducted. It’s much more important for time to
be spent on data collection and data analysis and not on copying and pasting plots back and
forth across a variety of programs.

In a traditional analysis if an error was made with the original data, we’d need to step through
the entire process again: recreate the plots and copy and paste all of the new plots and our
statistical analysis into your document. This is error prone and a frustrating use of time. We’ll
see how to use R Markdown to get away from this tedious activity so that we can spend more
time doing science.

“We are talking about computational reproducibility.” - Yihui Xie

Reproducibility means a lot of things in terms of different scientific fields. Are experiments
conducted in a way that another researcher could follow the steps and get similar results? In
this book, we will focus on what is known as computational reproducibility. This refers
to being able to pass all of one’s data analysis, data-sets, and conclusions to someone else
and have them get exactly the same results on their machine. This allows for time to be
spent interpreting results and considering assumptions instead of the more error prone way
of starting from scratch or following a list of steps that may be different from machine to
machine.

16



Part I

Getting started

17



1 Getting Started with Data in R

Before we can start exploring data in R, there are some key concepts to understand first:

1. What are R and RStudio?
2. How do I code in R?
3. What are R packages?

We’ll introduce these concepts in upcoming Sections 1.1 - 1.3 If you are already somewhat
familiar with these concepts, feel free to skip to Section 1.4 where we’ll introduce our first data
set: all domestic flights departing a New York City airport in 2013. This is a dataset we will
explore in depth in this book.

1.1 What are R and RStudio?

For much of this book, we will assume that you are using R via RStudio. First time users
often confuse the two. At its simplest:

• R is like a car’s engine.
• RStudio is like a car’s dashboard.

R: Engine RStudio: Dashboard

More precisely, R is a programming language that runs computations while RStudio is an
integrated development environment (IDE) that provides an interface by adding many conve-
nient features and tools. So just as having access to a speedometer, rearview mirrors, and a

18



navigation system makes driving much easier, using RStudio’s interface makes using R much
easier as well.

1.1.1 Using RStudio Cloud

RStudio Cloud (https://rstudio.cloud) is a hosted version of RStudio that allows you to begin
coding directly from your browser - there is no software to install and nothing to configure on
your computer.

To begin using RStudio Cloud use the link provided by your instructor to gain access to the
classroom workspace. You will be prompted to create a free account or log in if you have an
existing account.

After you open RStudio Cloud, you should now have access to the classroom under ‘Spaces’
on the left hand side (in this case ‘STAT202’).

Throughout this course you will be working on various activities. Once the instructor has
made an activity available you will click on the classroom Workspace (STAT202) to access the
available projects. To begin working on an activity click ‘Start’. Once that activity project is
open navigate to the ‘File’ pane and open the Quarto ‘.qmd’ file.

19

https://rstudio.cloud


You can use RStudio Cloud for personal use as well by creating projects in ‘Your Workspace’.
However, RStudio Cloud limits the number of projects and amount of accessible time so it is
recommended that you later install the software on your own computer.

1.1.2 Installing R and RStudio on your personal computer

Note about RStudio Server or RStudio Cloud: If your instructor has pro-
vided you with a link and access to RStudio Server or RStudio Cloud, then you
can skip this section. We do recommend after a few months of working on RStudio
Server/Cloud that you return to these instructions to install this software on your
own computer though. You will first need to download and install both R and
RStudio (Desktop version) on your computer. It is important that you install R
first and then install RStudio second.

1. You must do this first: Download and install R.

• If you are a Windows user: Click on “Download R for Windows”, then click on
“base”, then click on the Download link.

• If you are macOS user: Click on “Download R for (Mac) OS X”, then under “Latest
release:” click on R-X.X.X.pkg, where R-X.X.X is the version number. For example,
the latest version of R as of August 10, 2019 was R-3.6.1.

2. You must do this second: Download and install RStudio.

• Scroll down to “Installers for Supported Platforms” near the bottom of the page.

20

https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/


• Click on the download link corresponding to your computer’s operating system.

1.1.3 Using R via RStudio

Recall our car analogy from above. Much as we don’t drive a car by interacting directly with
the engine but rather by interacting with elements on the car’s dashboard, we won’t be using
R directly but rather we will use RStudio’s interface. After you install R and RStudio on your
computer, you’ll have two new programs AKA applications you can open. We will always
work in RStudio and not R. In other words:

R: Do not open this RStudio: Open this

After you open RStudio, you should see the following:

21



Note the three panes, which are three panels dividing the screen: The Console pane, the Files
pane, and the Environment pane. Over the course of this chapter, you’ll come to learn what
purpose each of these panes serve.

1.2 How do I code in R?

Now that you’re set up with R and RStudio, you are probably asking yourself “OK. Now how
do I use R?” The first thing to note as that unlike other statistical software programs like Excel,
STATA, or SAS that provide point and click interfaces, R is an interpreted language, meaning
you have to enter in R commands written in R code. In other words, you have to code/program
in R. Note that we’ll use the terms “coding” and “programming” interchangeably in this
book.

While it is not required to be a seasoned coder/computer programmer to use R, there is still a
set of basic programming concepts that R users need to understand. Consequently, while this
book is not a book on programming, you will still learn just enough of these basic programming
concepts needed to explore and analyze data effectively.

1.2.1 Creating your first Quarto document

Quarto allows you to easily create a document which combines your code, the results from
your code, as well as any text that accompanies the analysis. To create a new Quarto file,
in RStudio select File>New File>Quarto Document. Then, you will see a window pop-up
titled New Quarto Document. Here, you specify the type of file you wish to create. HTML is
generally the recommended document type since it does not have traditional page separators
like PDF and Word do. You can also choose a title and author for your document using their
respective fields. Finally, select Create to create your new Quarto file. You will see it appear
as a tab in your RStudio session. Click the save icon to save your new document.

The following is an example of a Quarto document:

22

https://en.wikipedia.org/wiki/Point_and_click
https://en.wikipedia.org/wiki/Interpreted_language


a) Save your document.
b) Click Render to compile your Quarto document into the file type that you specified. The

file will be saved in your Files pane. This will also save your document.
c) Insert a new code chunk in your document where the cursor is located. You will often

have many code chunks in your document.
d) Run the current code chunk.

When you create your Quarto file and Render it into a document, the chunks are run in order
and any output from them is shown in the document, in the order and location that their
respective chunk appears. Sometimes you may wish to type code or analyze data without it
printing in the document. If that is the case, you type the code in the Console rather than in
the .qmd file.

While you read through this book, it will be helpful to have a Quarto document open so you
can copy code provided and paste it into a code chunk to run.

1.2.2 Basic programming concepts and terminology

We now introduce some basic programming concepts and terminology. Instead of asking you
to learn all these concepts and terminology right now, we’ll guide you so that you’ll “learn by
doing.” Note that in this book we will always use a different font to distinguish regular text
from computer_code. The best way to master these topics is, in our opinions, “learning by
doing” and lots of repetition.

• Basics:

– Console: Where you enter in commands.

23



– Running code: The act of telling R to perform an action by giving it commands in
the console.

– Objects: Where values are saved in R. In order to do useful and interesting things
in R, we will want to assign a name to an object. For example we could do the
following assignments: x <- 44 - 20 and three <- 3. This would allow us to run
x + three which would return 27.

– Data types: Integers, doubles/numerics, logicals, and characters.

In RStudio try typing the following code into the console or code chunk.

x <- 44-20
three <- 3
x+three

[1] 27

You should see x and three appear as stored objects in the Environment pane. Anything
you store in the Environment pane can be referenced and used later. R can also be used as a
calculator, notice how it evaluates x+three.

• Vectors: A series of values. These are created using the c() function, where c() stands
for “combine” or “concatenate”. For example: c(6, 11, 13, 31, 90, 92).

• Factors: Categorical data are represented in R as factors.

• Data frames: Data frames are like rectangular spreadsheets: they are representations of
datasets in R where the rows correspond to observations and the columns correspond to
variables that describe the observations. We’ll cover data frames later in Section 1.4.

• Conditionals:

– Testing for equality in R using == (and not = which is typically used for assignment).
Ex: 2 + 1 == 3 compares 2 + 1 to 3 and is correct R code, while 2 + 1 = 3 will
return an error.

– Boolean algebra: TRUE/FALSE statements and mathematical operators such as <
(less than), <= (less than or equal), and != (not equal to).

– Logical operators: & representing “and” as well as | representing “or.” Ex: (2 +
1 == 3) & (2 + 1 == 4) returns FALSE since both clauses are not TRUE (only the
first clause is TRUE). On the other hand, (2 + 1 == 3) | (2 + 1 == 4) returns
TRUE since at least one of the two clauses is TRUE.

• Functions, also called commands: Functions perform tasks in R. They take in inputs
called arguments and return outputs. You can either manually specify a function’s
arguments or use the function’s default values.

24



This list is by no means an exhaustive list of all the programming concepts and terminology
needed to become a savvy R user; such a list would be so large it wouldn’t be very useful,
especially for novices. Rather, we feel this is a minimally viable list of programming concepts
and terminology you need to know before getting started. We feel that you can learn the rest
as you go. Remember that your mastery of all of these concepts and terminology will build as
you practice more and more.

1.2.3 Errors, warnings, and messages

One thing that intimidates new R and RStudio users is how it reports errors, warnings, and
messages. R reports errors, warnings, and messages in a glaring red font, which makes it seem
like it is scolding you. However, seeing red text in the console is not always bad.

R will show red text in the console pane in three different situations:

• Errors: When the red text is a legitimate error, it will be prefaced with “Error in…”
and try to explain what went wrong. Generally when there’s an error, the code will
not run. For example, we’ll see in Subsection 1.3.3 if you see Error in ggplot(...)
: could not find function "ggplot", it means that the ggplot() function is not
accessible because the package that contains the function (ggplot2) was not loaded with
library(ggplot2). Thus you cannot use the ggplot() function without the ggplot2
package being loaded first.

• Warnings: When the red text is a warning, it will be prefaced with “Warning:” and
R will try to explain why there’s a warning. Generally your code will still work, but
with some caveats. For example, you will see in Chapter 2 if you create a scatterplot
based on a dataset where one of the values is missing, you will see this warning: Warning:
Removed 1 rows containing missing values (geom_point). R will still produce the
scatterplot with all the remaining values, but it is warning you that one of the points
isn’t there.

• Messages: When the red text doesn’t start with either “Error” or “Warning”, it’s just
a friendly message. You’ll see these messages when you load R packages in the upcoming
Subsection 1.3.2 or when you read data saved in spreadsheet files with the read_csv()
function as you’ll see in Chapter 4. These are helpful diagnostic messages and they don’t
stop your code from working. Additionally, you’ll see these messages when you install
packages too using install.packages().

Remember, when you see red text in the console, don’t panic. It doesn’t necessarily mean
anything is wrong. Rather:

• If the text starts with “Error”, figure out what’s causing it. Think of errors as a red
traffic light: something is wrong!

25



• If the text starts with “Warning”, figure out if it’s something to worry about. For
instance, if you get a warning about missing values in a scatterplot and you know there
are missing values, you’re fine. If that’s surprising, look at your data and see what’s
missing. Think of warnings as a yellow traffic light: everything is working fine, but
watch out/pay attention.

• Otherwise the text is just a message. Read it, wave back at R, and thank it for talking
to you. Think of messages as a green traffic light: everything is working fine.

1.2.4 Tips on learning to code

Learning to code/program is very much like learning a foreign language, it can be very daunting
and frustrating at first. Such frustrations are very common and it is very normal to feel
discouraged as you learn. However just as with learning a foreign language, if you put in the
effort and are not afraid to make mistakes, anybody can learn.

Here are a few useful tips to keep in mind as you learn to program:

• Remember that computers are not actually that smart: You may think your
computer or smartphone are “smart,” but really people spent a lot of time and energy
designing them to appear “smart.” Rather you have to tell a computer everything it needs
to do. Furthermore the instructions you give your computer can’t have any mistakes in
them, nor can they be ambiguous in any way.

• Take the “copy, paste, and tweak” approach: Especially when learning your first
programming language, it is often much easier to taking existing code that you know
works and modify it to suit your ends, rather than trying to write new code from scratch.
We call this the copy, paste, and tweak approach. So early on, we suggest not trying to
write code from memory, but rather take existing examples we have provided you, then
copy, paste, and tweak them to suit your goals. Don’t be afraid to play around!

• The best way to learn to code is by doing: Rather than learning to code for its
own sake, we feel that learning to code goes much smoother when you have a goal in
mind or when you are working on a particular project, like analyzing data that you are
interested in.

• Practice is key: Just as the only method to improving your foreign language skills
is through practice, practice, and practice; so also the only method to improving your
coding is through practice, practice, and practice. Don’t worry however; we’ll give you
plenty of opportunities to do so!

26



1.3 What are R packages?

Another point of confusion with many new R users is the idea of an R package. R packages
extend the functionality of R by providing additional functions, data, and documentation.
They are written by a world-wide community of R users and can be downloaded for free from
the internet. For example, among the many packages we will use in this book are the ggplot2
package for data visualization in Chapter 2, the dplyr package for data wrangling in Chapter 3,
and the moderndive package that accompanies this book.

A good analogy for R packages is they are like apps you can download onto a mobile phone:

R: A new phone R Packages: Apps you can download

So R is like a new mobile phone: while it has a certain amount of features when you use it
for the first time, it doesn’t have everything. R packages are like the apps you can download
onto your phone from Apple’s App Store or Android’s Google Play.

Let’s continue this analogy by considering the Instagram app for editing and sharing pictures.
Say you have purchased a new phone and you would like to share a recent photo you have
taken on Instagram. You need to:

1. Install the app: Since your phone is new and does not include the Instagram app, you
need to download the app from either the App Store or Google Play. You do this once
and you’re set. You might do this again in the future any time there is an update to the
app.

2. Open the app: After you’ve installed Instagram, you need to open the app.

Once Instagram is open on your phone, you can then proceed to share your photo with your
friends and family. The process is very similar for using an R package. You need to:

1. Install the package: This is like installing an app on your phone. Most packages are not
installed by default when you install R and RStudio. Thus if you want to use a package
for the first time, you need to install it first. Once you’ve installed a package, you likely
won’t install it again unless you want to update it to a newer version.

27



2. “Load” the package: “Loading” a package is like opening an app on your phone. Packages
are not “loaded” by default when you start RStudio on your computer; you need to “load”
each package you want to use every time you start RStudio.

Let’s now show you how to perform these two steps for the ggplot2 package for data visual-
ization.

1.3.1 Package installation

Note about RStudio Server/Cloud: If your instructor has provided you with
a link and access to RStudio Server/Cloud, you probably will not need to install
packages, as they have likely been pre-installed for you by your instructor. That
being said, it is still a good idea to know this process for later on when you are not
using RStudio Server/Cloud, but rather RStudio Desktop on your own computer.

There are two ways to install an R package. For example, to install the ggplot2 package:

1. Easy way: In the Files pane of RStudio:

a) Click on the “Packages” tab

b) Click on “Install”

c) Type the name of the package under “Packages (separate multiple with space or
comma):” In this case, type ggplot2

d) Click “Install”

28



2. Slightly harder way: An alternative but slightly less convenient way to install a
package is by typing install.packages("ggplot2") in the Console pane of RStudio
and hitting enter. Note you must include the quotation marks.

Much like an app on your phone, you only have to install a package once. However, if you
want to update an already installed package to a newer verions, you need to re-install it by
repeating the above steps.

� Learning Check 1.1

Repeat the above installing steps for the dplyr, nycflights13, and knitr packages. This
will install the earlier mentioned dplyr package, the nycflights13 package containing
data on all domestic flights leaving a NYC airport in 2013, and the knitr package for
writing reports in R.

1.3.2 Package loading

Recall that after you’ve installed a package, you need to “load” it, in other words open it. We
do this by using the library() command. For example, to load the ggplot2 package, run the

29



following code in the Console pane. What do we mean by “run the following code”? Either
type or copy & paste the following code into the Console pane and then hit the enter key.

library(ggplot2)

If after running the above code, a blinking cursor returns next to the > “prompt” sign, it means
you were successful and the ggplot2 package is now loaded and ready to use. If however, you
get a red “error message” that reads…

Error in library(ggplot2) : there is no package called ‘ggplot2’

… it means that you didn’t successfully install it. In that case, go back to the previous
subsection “Package installation” and install it.

� Learning Check 1.2

“Load” the dplyr, nycflights13, and knitr packages as well by repeating the above
steps.

1.3.3 Package use

One extremely common mistake new R users make when wanting to use particular packages is
that they forget to “load” them first by using the library() command we just saw. Remember:
you have to load each package you want to use every time you start RStudio. If you don’t first
“load” a package, but attempt to use one of its features, you’ll see an error message similar
to:

Error: could not find function

R is telling you that you are trying to use a function in a package that has not yet been
“loaded.” Almost all new users forget do this when starting out, and it is a little annoying to
get used to. However, you’ll remember with practice.

1.4 Explore your first dataset

Let’s put everything we’ve learned so far into practice and start exploring some real data! Data
comes to us in a variety of formats, from pictures to text to numbers. Throughout this book,
we’ll focus on datasets that are saved in “spreadsheet”-type format; this is probably the most
common way data are collected and saved in many fields. Remember from Subsection 1.2.2

30



that these “spreadsheet”-type datasets are called data frames in R; we will focus on working
with data saved as data frames throughout this book.

Let’s first load all the packages needed for this chapter, assuming you’ve already installed
them. Read Section 1.3 for information on how to install and load R packages if you haven’t
already.

library(nycflights13)
library(dplyr)
library(knitr)

At the beginning of all subsequent chapters in this text, we’ll always have a list of packages
that you should have installed and loaded to work with that chapter’s R code.

1.4.1 nycflights13 package

Many of us have flown on airplanes or know someone who has. Air travel has become an
ever-present aspect in many people’s lives. If you live in or are visiting a relatively large city
and you walk around that city’s airport, you see gates showing flight information from many
different airlines. And you will frequently see that some flights are delayed because of a variety
of conditions. Are there ways that we can avoid having to deal with these flight delays?

We’d all like to arrive at our destinations on time whenever possible. (Unless you secretly
love hanging out at airports. If you are one of these people, pretend for the moment that
you are very much anticipating being at your final destination.) Throughout this book, we’re
going to analyze data related to flights contained in the nycflights13 package (Wickham
2021). Specifically, this package contains five data sets saved in five separate data frames with
information about all domestic flights departing from New York City in 2013. These include
Newark Liberty International (EWR), John F. Kennedy International (JFK), and LaGuardia
(LGA) airports:

• flights: Information on all 336,776 flights
• airlines: A table matching airline names and their two letter IATA airline codes (also

known as carrier codes) for 16 airline companies
• planes: Information about each of 3,322 physical aircraft used.
• weather: Hourly meteorological data for each of the three NYC airports. This data

frame has 26,115 rows, roughtly corresponding to the 365 × 24 × 3 = 26,280 possible
hourly measurements one can observe at three locations over the course of a year.

• airports: Airport names, codes, and locations for 1,458 destination airports.

31



1.4.2 flights data frame

We will begin by exploring the flights data frame that is included in the nycflights13
package and getting an idea of its structure. Run the following code in your console (either
by typing it or cutting & pasting it): it loads in the flights dataset into your Console. Note
depending on the size of your monitor, the output may vary slightly.

flights

# A tibble: 336,776 x 19
year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846
10 2013 1 1 558 600 -2 753 745
# i 336,766 more rows
# i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
# tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
# hour <dbl>, minute <dbl>, time_hour <dttm>

Let’s unpack this output:

• A tibble: 336,776 x 19: A tibble is a kind of data frame used in R. This particular
data frame has

– 336,776 rows
– 19 columns corresponding to 19 variables describing each observation

• year month day dep_time sched_dep_time dep_delay arr_time are different
columns, in other words variables, of this data frame.

• We then have the first 10 rows of observations corresponding to 10 flights.

• ... with 336,766 more rows, and 11 more variables: indicating to us that
336,766 more rows of data and 11 more variables could not fit in this screen.

Unfortunately, this output does not allow us to explore the data very well. Let’s look at
different tools to explore data frames.

32



1.4.3 Exploring data frames

Among the many ways of getting a feel for the data contained in a data frame such as flights,
we present three functions that take as their “argument”, in other words their input, the data
frame in question. We also include a fourth method for exploring one particular column of a
data frame:

1. Using the View() function built for use in RStudio. We will use this the most.
2. Using the glimpse() function, which is included in the dplyr package.
3. Using the kable() function, which is included in the knitr package.
4. Using the $ operator to view a single variable in a data frame.

1. View():

Run View(flights) in your Console in RStudio, either by typing it or cutting & pasting it
into the Console pane, and explore this data frame in the resulting pop-up viewer. You should
get into the habit of always Viewing any data frames that come your way. Note the capital
“V” in View. R is case-sensitive so you’ll receive an error is you run view(flights) instead
of View(flights).

� Learning Check 1.3

What does any ONE row in this flights dataset refer to?

a. Data on an airline
b. Data on a flight
c. Data on an airport
d. Data on multiple flights

By running View(flights), we see the different variables listed in the columns and we see that
there are different types of variables. Some of the variables like distance, day, and arr_delay
are what we will call quantitative variables. These variables are numerical in nature. Other
variables here are categorical.

Note that if you look in the leftmost column of the View(flights) output, you will see a
column of numbers. These are the row numbers of the dataset. If you glance across a row with
the same number, say row 5, you can get an idea of what each row corresponds to. In other
words, this will allow you to identify what object is being referred to in a given row. This is
often called the observational unit. The observational unit in this example is an individual
flight departing New York City in 2013. You can identify the observational unit by determining
what “thing” is being measured or described by each of the variables.

2. glimpse():

33



The second way to explore a data frame is using the glimpse() function included in the
dplyr package. Thus, you can only use the glimpse() function after you’ve loaded the dplyr
package. This function provides us with an alternative method for exploring a data frame:

glimpse(flights)

Rows: 336,776
Columns: 19
$ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2~
$ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, ~
$ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, ~
$ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1~
$ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,~
$ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,~
$ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1~
$ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "~
$ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4~
$ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394~
$ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",~
$ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",~
$ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1~
$ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, ~
$ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6~
$ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0~
$ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0~

We see that glimpse() will give you the first few entries of each variable in a row after the
variable. In addition, the data type (see Subsection 1.2.2) of the variable is given immediately
after each variable’s name inside < >. Here, int and dbl refer to “integer” and “double”, which
are computer coding terminology for quantitative/numerical variables. In contrast, chr refers
to “character”, which is computer terminology for text data. Text data, such as the carrier
or origin of a flight, are categorical variables. The time_hour variable is an example of one
more type of data type: dttm. As you may suspect, this variable corresponds to a specific
date and time of day. However, we won’t work with dates in this class and leave it to a more
advanced book on data science.

� Learning Check 1.4

What are some examples in this dataset of categorical variables? What makes them
different than quantitative variables?

34



3. kable():

The another way to explore the entirety of a data frame is using the kable() function from
the knitr package. Let’s explore the different carrier codes for all the airlines in our dataset
two ways. Run both of these lines of code in your Console:

airlines
kable(airlines)

At first glance, it may not appear that there is much difference in the outputs. However when
using tools for document production such as Quarto, the latter code produces output that is
much more legible and reader-friendly.

4. $ operator

Lastly, the $ operator allows us to explore a single variable within a data frame. For example,
run the following in your console

airlines
airlines$name

We used the $ operator to extract only the name variable and return it as a vector of length
16. We will only be occasionally exploring data frames using this operator, instead favoring
the View() and glimpse() functions.

1.4.4 Help files

Another nice feature of R is the help system. You can get help in R by entering a ? before the
name of a function or data frame in question and you will be presented with a page showing
the documentation. For example, let’s look at the help file for the flights data frame:

?flights

A help file should pop-up in the Help pane of RStudio. If you have questions about a function
or data frame included in an R package, you should get in the habit of consulting the help file
right away.

1.5 Conclusion

We’ve given you what we feel are the most essential concepts to know before you can start
exploring data in R. Is this chapter exhaustive? Absolutely not. To try to include everything
in this chapter would make the chapter so large it wouldn’t be useful!

35

https://quarto.org/docs/get-started/hello/rstudio.html


1.5.1 Additional resources

If you are completely new to the world of coding, R, and RStudio and feel you could benefit
from a more detailed introduction, we suggest you check out Chester Ismay’s short book Get-
ting used to R, RStudio, and R Markdown (Ismay 2016), which includes screencast recordings
that you can follow along and pause as you learn. While this book teaches R Markdown it
it important to note that everything in R Markdown is transferable to Quarto. R Markdown
and Quarto are both tools used for reproducible research but R Markdown is fundamentally
tied to R while Quarto is a multi-language platform. For a getting started guide on Quarto,
we suggest the Quarto Getting Started webpage

1.6 Exercises

1.6.1 Exercises explained

Following each chapter, there are a set of Exercises for you to practice what you have learned.
The Conceptual questions are multiple choice or short answer questions focusing on the major
concepts learned throughout the chapter. The Application questions focus on practical skills
learned throughout the chapter. And the Advanced questions teach new and useful skills
beyond what was taught in the chapter.

The chapter exercises use the covid_states, nba, and titanic datasets which are in-
cluded in the ISDSdatasets package. To install ISDSdatasets on your computer, type
remotes::install_github("NUstat/ISDSdatasets") in your Console. You may need to
install the remotes package first. See Section 1.3.1 for how to install the remotes package. If
you are using RStudio Cloud, your instructor probably already installed all of this for you.

36

https://rbasics.netlify.com/
https://rbasics.netlify.com/
https://quarto.org/docs/get-started/hello/rstudio.html


You can see what packages you have installed by clicking on the Packages tab in the lower
right pane.

To use the package make sure you load it using library(ISDSdatasets). To explore a dataset
within the package you can use the View() or data() function in your Console. For exam-
ple, try typing data(titanic) in the Console. This will load the titanic data into the
Environment.

1.6.2 Conceptual

Exercise 1.1. Which type of document do we use to both code and write explanations?

a) R Script
b) Quarto Document
c) HTML file
d) R Notebook

Exercise 1.2. Which type of red text in the console pane generally means that your code will
not run?

a) error
b) warning
c) message

Exercise 1.3. If you place the operator ? before the name of a function or data frame, then
you will be presented with a page showing the documentation for the respective function or
data frame.

a) TRUE
b) FALSE

Exercise 1.4. If you type 8/2 == 4 into the console, what will the output be?

a) TRUE
b) FALSE
c) NA
d) 0
e) 4

Exercise 1.5. If you type 3^2 != 9 into the console, what will the output be?

a) TRUE
b) FALSE

37



c) NA
d) 0
e) 9

Exercise 1.6. If you type 5*3 into the console, what will the output be?

a) TRUE
b) FALSE
c) NA
d) 8
e) 15

Exercise 1.7. What does any ONE row in this flights dataset refer to?

a) Data on an airline
b) Data on a flight
c) Data on an airport
d) Data on multiple flights

Exercise 1.8. In the flights dataset, air_time and arr_delay are which type of variables?

a) string
b) categorical
c) quantitative
d) character
e) dataframe

1.6.3 Application

Exercise 1.9. In a code chunk, first define a variable z to be the product of 12 and 31, then
define a variable called add_on to be the number 12. Print the output of z + add_on.

Exercise 1.10. Consider the titanic data set included in the package ISDSdatasets. This
is one of the most popular data sets used for understanding machine learning basics, and you
will likely see this data set in the future if you continue on in your studies to machine learning.

Use the glimpse() function from the dplyr package to explore and describe the dataset.

38



1.6.4 Advanced

For the following problems we will use the titanic data set to learn additional data exploration
techniques.

Exercise 1.11. Use the function head() on the titanic dataset. What does it do? Based
on this, what do you expect the function tail() does?

Exercise 1.12. The function unique(), when used on a specific variable within a data set,
returns a vector of the values of the variable with duplicate elements removed. Try using the
function unique() on the variable Embarked.

39



Part II

Data Exploration via the tidyverse

40



2 Data Visualization

We begin the development of your data science toolbox with data visualization. By visualizing
our data, we gain valuable insights that we couldn’t initially see from just looking at the
raw data in spreadsheet form. We will use the ggplot2 package as it provides an easy way
to customize your plots. ggplot2 is rooted in the data visualization theory known as The
Grammar of Graphics (Wilkinson 2005).

At the most basic level, graphics/plots/charts (we use these terms interchangeably in this
book) provide a nice way for us to get a sense for how quantitative variables compare in terms
of their center (where the values tend to be located) and their spread (how they vary around
the center). Graphics should be designed to emphasize the findings and insight you want your
audience to understand. This does however require a balancing act. On the one hand, you
want to highlight as many meaningful relationships and interesting findings as possible; on the
other you don’t want to include so many as to overwhelm your audience.

As we will see, plots/graphics also help us to identify patterns and outliers in our data. We will
see that a common extension of these ideas is to compare the distribution of one quantitative
variable (i.e., what the spread of a variable looks like or how the variable is distributed in terms
of its values) as we go across the levels of a different categorical variable.

Packages Needed

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
Read Section 1.3 for information on how to install and load R packages.

library(nycflights13)
library(ggplot2)
library(dplyr)

2.1 The Grammar of Graphics

We begin with a discussion of a theoretical framework for data visualization known as “The
Grammar of Graphics,” which serves as the foundation for the ggplot2 package. Think of
how we construct sentences in English to form sentences by combining different elements,

41



like nouns, verbs, particles, subjects, objects, etc. However, we can’t just combine these
elements in any arbitrary order; we must do so following a set of rules known as a linguistic
grammar. Similarly to a linguistic grammar, “The Grammar of Graphics” define a set of rules
for constructing statistical graphics by combining different types of layers. This grammar was
created by Leland Wilkinson (Wilkinson 2005) and has been implemented in a variety of data
visualization software including R.

2.1.1 Components of the Grammar

In short, the grammar tells us that:

A statistical graphic is a mapping of data variables to aesthetic attributes
of geometric objects.

Specifically, we can break a graphic into three essential components:

1. data: the data set composed of variables that we map.
2. geom: the geometric object in question. This refers to the type of object we can observe

in a plot. For example: points, lines, and bars.
3. aes: aesthetic attributes of the geometric object. For example, x-position, y-position,

color, shape, and size. Each assigned aesthetic attribute can be mapped to a variable in
our data set.

You might be wondering why we wrote the terms data, geom, and aes in a computer code
type font. We’ll see very shortly that we’ll specify the elements of the grammar in R using
these terms. However, let’s first break down the grammar with an example.

2.1.2 Gapminder data

In February 2006, a statistician named Hans Rosling gave a TED talk titled “The best stats
you’ve ever seen” where he presented global economic, health, and development data from the
website gapminder.org. For example, for the 142 countries included from 2007, let’s consider
only the first 6 countries when listed alphabetically in Table 2.1.

Table 2.1: Gapminder 2007 Data: First 6 of 142 countries

Table 2.1: Gapminder 2007 Data: First 6 of 142 countries

Country Continent Life Expectancy Population GDP per Capita
Afghanistan Asia 43.8 31889923 975
Albania Europe 76.4 3600523 5937
Algeria Africa 72.3 33333216 6223

42

https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
http://www.gapminder.org/tools/#_locale_id=en;&chart-type=bubbles


Country Continent Life Expectancy Population GDP per Capita
Angola Africa 42.7 12420476 4797
Argentina Americas 75.3 40301927 12779
Australia Oceania 81.2 20434176 34435

Each row in this table corresponds to a country in 2007. For each row, we have 5 columns:

1. Country: Name of country.
2. Continent: Which of the five continents the country is part of. (Note that “Americas”

includes countries in both North and South America and that Antarctica is excluded.)
3. Life Expectancy: Life expectancy in years.
4. Population: Number of people living in the country.
5. GDP per Capita: Gross domestic product (in US dollars).

Now consider Figure 2.1, which plots this data for all 142 countries in the data.

40

50

60

70

80

0 10000 20000 30000 40000 50000
GDP per capita

Li
fe

 e
xp

ec
ta

nc
y

Continent

Africa

Americas

Asia

Europe

Oceania

Population

250000000

500000000

750000000

1000000000

1250000000

Figure 2.1: Life Expectancy over GDP per Capita in 2007

Let’s view this plot through the grammar of graphics:

43



1. The data variable GDP per Capita gets mapped to the x-position aesthetic of the
points.

2. The data variable Life Expectancy gets mapped to the y-position aesthetic of the
points.

3. The data variable Population gets mapped to the size aesthetic of the points.
4. The data variable Continent gets mapped to the color aesthetic of the points.

We’ll see shortly that data corresponds to the particular data frame where our data is saved
and a “data variable” corresponds to a particular column in the data frame. Furthermore,
the type of geometric object considered in this plot are points. That being said, while in this
example we are considering points, graphics are not limited to just points. Other plots involve
lines while others involve bars.

Let’s summarize the three essential components of the Grammar in Table 2.2.

Table 2.2: Summary of Grammar of Graphics for this plot

Table 2.2: Summary of Grammar of Graphics for this plot

data variable aes geom
GDP per Capita x point
Life Expectancy y point
Population size point
Continent color point

2.1.3 Other components

There are other components of the Grammar of Graphics we can control as well. As you
start to delve deeper into the Grammar of Graphics, you’ll start to encounter these topics
more frequently. In this book however, we’ll keep things simple and only work with the two
additional components listed below:

• faceting breaks up a plot into small multiples corresponding to the levels of another
variable (Section 2.6)

• position adjustments for barplots (Section 2.8)

Other more complex components like scales and coordinate systems are left for a more
advanced text such as R for Data Science (Grolemund andWickham 2016). Generally speaking,
the Grammar of Graphics allows for a high degree of customization of plots and also a consistent
framework for easily updating and modifying them.

44

http://r4ds.had.co.nz/data-visualisation.html#aesthetic-mappings


2.1.4 ggplot2 package

In this book, we will be using the ggplot2 package for data visualization, which is an imple-
mentation of the Grammar of Graphics for R (Wickham et al. 2022). As we noted earlier, a lot
of the previous section was written in a computer code type font. This is because the various
components of the Grammar of Graphics are specified in the ggplot() function included in
the ggplot2 package, which expects at a minimum as arguments (i.e. inputs):

• The data frame where the variables exist: the data argument.
• The mapping of the variables to aesthetic attributes: the mapping argument which spec-

ifies the aesthetic attributes involved.

After we’ve specified these components, we then add layers to the plot using the + sign. The
most essential layer to add to a plot is the layer that specifies which type of geometric object
we want the plot to involve: points, lines, bars, and others. Other layers we can add to a
plot include layers specifying the plot title, axes labels, visual themes for the plots, and facets
(which we’ll see in Section 2.6.

Let’s now put the theory of the Grammar of Graphics into practice.

2.2 Five Named Graphs - The 5NG

In order to keep things simple, we will only focus on five types of graphics in this book, each
with a commonly given name. We term these “five named graphs” the 5NG:

1. scatterplots
2. linegraphs
3. boxplots
4. histograms
5. barplots

We will discuss some variations of these plots, but with this basic repertoire of graphics in
your toolbox you can visualize a wide array of different variable types. Note that certain
plots are only appropriate for categorical variables and while others are only appropriate for
quantitative variables. You’ll want to quiz yourself often as we go along on which plot makes
sense a given a particular problem or data set.

2.3 5NG#1: Scatterplots

The simplest of the 5NG are scatterplots, also called bivariate plots. They allow you to visualize
the relationship between two numerical variables. While you may already be familiar with

45



scatterplots, let’s view them through the lens of the Grammar of Graphics. Specifically, we
will visualize the relationship between the following two numerical variables in the flights
data frame included in the nycflights13 package:

1. dep_delay: departure delay on the horizontal “x” axis and
2. arr_delay: arrival delay on the vertical “y” axis

for Alaska Airlines flights leaving NYC in 2013. This requires paring down the data from all
336,776 flights that left NYC in 2013, to only the 714 Alaska Airlines flights that left NYC in
2013.

What this means computationally is: we’ll take the flights data frame, extract only the
714 rows corresponding to Alaska Airlines flights, and save this in a new data frame called
alaska_flights. Run the code below to do this:

alaska_flights <- flights %>%
filter(carrier == "AS")

For now we suggest you ignore how this code works; we’ll explain this in detail in Chapter 3
when we cover data wrangling. However, convince yourself that this code does what it is
supposed to by running View(alaska_flights): it creates a new data frame alaska_flights
consisting of only the 714 Alaska Airlines flights.

We’ll see later in Chapter 3 on data wrangling that this code uses the dplyr package for data
wrangling to achieve our goal: it takes the flights data frame and filters it to only return
the rows where carrier is equal to "AS", Alaska Airlines’ carrier code. Other examples of
carrier codes include “AA” for American Airlines and “UA” for United Airlines. Recall from
Section 1.2 that testing for equality is specified with == and not =. Fasten your seat belts and
sit tight for now however, we’ll introduce these ideas more fully in Chapter 3.

� Learning Check 2.1

Take a look at both the flights and alaska_flights data frames by running
View(flights) and View(alaska_flights). In what respect do these data frames dif-
fer?

2.3.1 Scatterplots via geom_point

Let’s now go over the code that will create the desired scatterplot, keeping in mind our dis-
cussion on the Grammar of Graphics in Section 2.1. We’ll be using the ggplot() function
included in the ggplot2 package.

46



ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point()

Let’s break this down piece-by-piece:

• Within the ggplot() function, we specify two of the components of the Grammar of
Graphics as arguments (i.e. inputs):

1. The data frame to be alaska_flights by setting data = alaska_flights.
2. The aesthetic mapping by setting aes(x = dep_delay, y = arr_delay). Specif-

ically:
– the variable dep_delay maps to the x position aesthetic
– the variable arr_delay maps to the y position aesthetic

• We add a layer to the ggplot() function call using the + sign. The layer in question
specifies the third component of the grammar: the geometric object. In this case the
geometric object are points, set by specifying geom_point().

After running the above code, you’ll notice two outputs: a warning message and the graphic
shown in Figure 2.2. Let’s first unpack the warning message:

Warning: Removed 5 rows containing missing values (`geom_point()`).

After running the above code, R returns a warning message alerting us to the fact that 5
rows were ignored due to them being missing. For 5 rows either the value for dep_delay or
arr_delay or both were missing (recorded in R as NA), and thus these rows were ignored in our
plot. Turning our attention to the resulting scatterplot in Figure 2.2, we see that a positive
relationship exists between dep_delay and arr_delay: as departure delays increase, arrival
delays tend to also increase. We also note the large mass of points clustered near (0, 0).

Before we continue, let’s consider a few more notes on the layers in the above code that
generated the scatterplot:

• Note that the + sign comes at the end of lines, and not at the beginning. You’ll get an
error in R if you put it at the beginning.

• When adding layers to a plot, you are encouraged to start a new line after the + so that
the code for each layer is on a new line. As we add more and more layers to plots, you’ll
see this will greatly improve the legibility of your code.

• To stress the importance of adding layers in particular the layer specifying the geometric
object, consider Figure 2.3 where no layers are added. A not very useful plot!

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay))

47



0

100

200

0 50 100 150 200
dep_delay

ar
r_

de
la

y

Figure 2.2: Arrival Delays vs Departure Delays for Alaska Airlines flights from NYC in 2013

48



0

100

200

0 50 100 150 200
dep_delay

ar
r_

de
la

y

Figure 2.3: Plot with no layers

� Learning Check 2.2

What are some practical reasons why dep_delay and arr_delay have a positive relation-
ship?

� Learning Check 2.3

What variables (not necessarily in the flights data frame) would you expect to have
a negative correlation (i.e. a negative relationship) with dep_delay? Why? Remember
that we are focusing on numerical variables here.

� Learning Check 2.4

Why do you believe there is a cluster of points near (0, 0)? What does (0, 0) correspond
to in terms of the Alaskan flights?

49



� Learning Check 2.5

What are some other features of the plot that stand out to you?

� Learning Check 2.6

Create a new scatterplot using different variables in the alaska_flights data frame by
modifying the example above.

2.3.2 Over-plotting

The large mass of points near (0, 0) in Figure 2.2 can cause some confusion as it is hard to
tell the true number of points that are plotted. This is the result of a phenomenon called
overplotting. As one may guess, this corresponds to values being plotted on top of each other
over and over again. It is often difficult to know just how many values are plotted in this way
when looking at a basic scatterplot as we have here. There are two methods to address the
issue of overplotting:

1. By adjusting the transparency of the points.
2. By adding a little random “jitter”, or random “nudges”, to each of the points.

Method 1: Changing the transparency

The first way of addressing overplotting is by changing the transparency of the points by using
the alpha argument in geom_point(). By default, this value is set to 1. We can change
this to any value between 0 and 1, where 0 sets the points to be 100% transparent and 1
sets the points to be 100% opaque. Note how the following code is identical to the code in
Section 2.3 that created the scatterplot with overplotting, but with alpha = 0.2 added to the
geom_point():

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point(alpha = 0.2)

50



0

100

200

0 50 100 150 200
dep_delay

ar
r_

de
la

y

Figure 2.4: Delay scatterplot with alpha = 0.2

The key feature to note in Figure 2.4 is that the transparency of the points is cumulative:
areas with a high-degree of overplotting are darker, whereas areas with a lower degree are less
dark. Note furthermore that there is no aes() surrounding alpha = 0.2. This is because we
are not mapping a variable to an aesthetic attribute, but rather merely changing the default
setting of alpha. In fact, you’ll receive an error if you try to change the second line above to
read geom_point(aes(alpha = 0.2)).

Method 2: Jittering the points

The second way of addressing overplotting is by jittering all the points, in other words give
each point a small nudge in a random direction. You can think of “jittering” as shaking the
points around a bit on the plot. Let’s illustrate using a simple example first. Say we have a
data frame jitter_example with 4 rows of identical value 0 for both x and y:

# A tibble: 4 x 2
x y

<dbl> <dbl>
1 0 0
2 0 0

51



3 0 0
4 0 0

We display the resulting scatterplot in Figure 2.5; observe that the 4 points are superimposed
on top of each other. While we know there are 4 values being plotted, this fact might not be
apparent to others.

−0.02

−0.01

0.00

0.01

0.02

−0.02 −0.01 0.00 0.01 0.02
x

y

Regular scatterplot

Figure 2.5: Regular scatterplot of jitter example data

In Figure 2.6 we instead display a jittered scatterplot where each point is given a random
“nudge.” It is now plainly evident that this plot involves four points. Keep in mind that
jittering is strictly a visualization tool; even after creating a jittered scatterplot, the original
values saved in jitter_example remain unchanged.

To create a jittered scatterplot, instead of using geom_point(), we use geom_jitter(). To
specify how much jitter to add, we adjust the width and height arguments. This corresponds
to how hard you’d like to shake the plot in units corresponding to those for both the horizontal
and vertical variables (in this case minutes).

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_jitter(width = 30, height = 30)

52



−0.02

−0.01

0.00

0.01

0.02

−0.02 −0.01 0.00 0.01 0.02
x

y

Jittered scatterplot

Figure 2.6: Jittered scatterplot of jitter example data

53



0

100

200

−50 0 50 100 150 200 250
dep_delay

ar
r_

de
la

y

Figure 2.7: Jittered delay scatterplot

Observe how the above code is identical to the code that created the scatterplot with overplot-
ting in Subsection 2.3.1, but with geom_point() replaced with geom_jitter().

The resulting plot in Figure 2.7 helps us a little bit in getting a sense for the overplotting, but
with a relatively large data set like this one (714 flights), it can be argued that changing the
transparency of the points by setting alpha proved more effective. In terms of how much jitter
one should add using the width and height arguments, it is important to add just enough
jitter to break any overlap in points, but not so much that we completely alter the overall
pattern in points.

� Learning Check 2.7

Why is setting the alpha argument value useful with scatterplots? What further infor-
mation does it give you that a regular scatterplot cannot?

54



� Learning Check 2.8

After viewing the Figure 2.4 above, give an approximate range of arrival delays and
departure delays that occur the most frequently. How has that region changed compared
to when you observed the same plot without the alpha = 0.2 set in Figure 2.2?

2.3.3 Summary

Scatterplots display the relationship between two numerical variables. They are among the
most commonly used plots because they can provide an immediate way to see the trend in one
variable versus another. However, if you try to create a scatterplot where either one of the
two variables is not numerical, you might get strange results. Be careful!

With medium to large data sets, you may need to play around with the different modifications
one can make to a scatterplot. This tweaking is often a fun part of data visualization, since
you’ll have the chance to see different relationships come about as you make subtle changes to
your plots.

2.4 5NG#2: Linegraphs

The next of the five named graphs are linegraphs. Linegraphs show the relationship between
two numerical variables when the variable on the x-axis, also called the explanatory variable, is
of a sequential nature; in other words there is an inherent ordering to the variable. The most
common example of linegraphs have some notion of time on the x-axis: hours, days, weeks,
years, etc. Since time is sequential, we connect consecutive observations of the variable on the
y-axis with a line. Linegraphs that have some notion of time on the x-axis are also called time
series plots. Linegraphs should be avoided when there is not a clear sequential ordering to the
variable on the x-axis. Let’s illustrate linegraphs using another data set in the nycflights13
package: the weather data frame.

Let’s get a sense for the weather data frame:

• Explore the weather data by running View(weather).
• Run ?weather to bring up the help file.

We can see that there is a variable called temp of hourly temperature recordings in Fahrenheit
at weather stations near all three airports in New York City: Newark (origin code EWR), JFK,
and La Guardia (LGA). Instead of considering hourly temperatures for all days in 2013 for all
three airports however, for simplicity let’s only consider hourly temperatures at only Newark
airport for the first 15 days in January.

55



Recall in Section 2.3 we used the filter() function to only choose the subset of rows of
flights corresponding to Alaska Airlines flights. We similarly use filter() here, but by
using the & operator we only choose the subset of rows of weather where

1. The origin is "EWR" and
2. the month is January and
3. the day is between 1 and 15

early_january_weather <- weather %>%
filter(origin == "EWR" & month == 1 & day <= 15)

� Learning Check 2.9

Take a look at both the weather and early_january_weather data frames by running
View(weather) and View(early_january_weather). In what respect do these data
frames differ?

� Learning Check 2.10

View() the flights data frame again. Why does the time_hour variable uniquely iden-
tify the hour of the measurement whereas the hour variable does not?

2.4.1 Linegraphs via geom_line

Let’s plot a linegraph of hourly temperatures in early_january_weather by using
geom_line() instead of geom_point() like we did for scatterplots:

ggplot(data = early_january_weather, mapping = aes(x = time_hour, y = temp)) +
geom_line()

56



30

40

50

Jan 07 Jan 14
time_hour

te
m

p

Figure 2.8: Hourly Temperature in Newark for January 1-15, 2013

Much as with the ggplot() code that created the scatterplot of departure and arrival delays
for Alaska Airlines flights in Figure 2.2, let’s break down the above code piece-by-piece in
terms of the Grammar of Graphics:

• Within the ggplot() function call, we specify two of the components of the Grammar
of Graphics as arguments:

1. The data frame to be early_january_weather by setting data = early_january_weather
2. The aesthetic mapping by setting aes(x = time_hour, y = temp). Specifically:

– the variable time_hour maps to the x position aesthetic.
– the variable temp maps to the y position aesthetic

• We add a layer to the ggplot() function call using the + sign. The layer in question
specifies the third component of the grammar: the geometric object in question. In this
case the geometric object is a line, set by specifying geom_line().

57



� Learning Check 2.11

Why should linegraphs be avoided when there is not a clear ordering of the horizontal
axis?

� Learning Check 2.12

Why are linegraphs frequently used when time is the explanatory variable on the x-axis?

� Learning Check 2.13

Plot a time series of a variable other than temp for Newark Airport in the first 15 days
of January 2013.

2.4.2 Summary

Linegraphs, just like scatterplots, display the relationship between two numerical variables.
However it is preferred to use linegraphs over scatterplots when the variable on the x-axis
(i.e. the explanatory variable) has an inherent ordering, like some notion of time.

2.5 5NG#3: Histograms

Let’s consider the temp variable in the weather data frame once again, but unlike with the
linegraphs in Section 2.4, let’s say we don’t care about the relationship of temperature to time,
but rather we only care about how the values of temp distribute. In other words:

1. What are the smallest and largest values?
2. What is the “center” value?
3. How do the values spread out?
4. What are frequent and infrequent values?

One way to visualize this distribution of this single variable temp is to plot them on a horizontal
line as we do in Figure 2.9:

25 50 75 100
temp

Figure 2.9: Plot of Hourly Temperature Recordings from NYC in 2013

58



This gives us a general idea of how the values of temp distribute: observe that temperatures
vary from around 11°F up to 100°F. Furthermore, there appear to be more recorded temper-
atures between 40°F and 60°F than outside this range. However, because of the high degree
of overlap in the points, it’s hard to get a sense of exactly how many values are between, say,
50°F and 55°F.

What is commonly produced instead of the above plot is known as a histogram. A histogram
is a plot that visualizes the distribution of a numerical value as follows:

1. We first cut up the x-axis into a series of bins, where each bin represents a range of
values.

2. For each bin, we count the number of observations that fall in the range corresponding
to that bin.

3. Then for each bin, we draw a bar whose height marks the corresponding count.

Let’s drill-down on an example of a histogram, shown in Figure 2.10.

0

1000

2000

3000

4000

5000

30 60 90
temp

co
un

t

Figure 2.10: Example histogram

59



Observe that there are three bins of equal width between 30°F and 60°F, thus we have three
bins of width 10°F each: one bin for the 30-40°F range, another bin for the 40-50°F range, and
another bin for the 50-60°F range. Since:

1. The bin for the 30-40°F range has a height of around 5000, this histogram is telling us
that around 5000 of the hourly temperature recordings are between 30°F and 40°F.

2. The bin for the 40-50°F range has a height of around 4300, this histogram is telling us
that around 4300 of the hourly temperature recordings are between 40°F and 50°F.

3. The bin for the 50-60°F range has a height of around 3500, this histogram is telling us
that around 3500 of the hourly temperature recordings are between 50°F and 60°F.

The remaining bins all have a similar interpretation.

2.5.1 Histograms via geom_histogram

Let’s now present the ggplot() code to plot your first histogram! Unlike with scatterplots and
linegraphs, there is now only one variable being mapped in aes(): the single numerical variable
temp. The y-aesthetic of a histogram gets computed for you automatically. Furthermore, the
geometric object layer is now a geom_histogram()

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 1 rows containing non-finite values (`stat_bin()`).

60



0

500

1000

1500

25 50 75 100
temp

co
un

t

Figure 2.11: Histogram of hourly temperatures at three NYC airports

Let’s unpack the messages R sent us first. The first message is telling us that the histogram
was constructed using bins = 30, in other words 30 equally spaced bins. This is known in
computer programming as a default value; unless you override this default number of bins
with a number you specify, R will choose 30 by default. We’ll see in the next section how to
change this default number of bins. The second message is telling us something similar to the
warning message we received when we ran the code to create a scatterplot of departure and
arrival delays for Alaska Airlines flights in Figure 2.2: that because one row has a missing NA
value for temp, it was omitted from the histogram. R is just giving us a friendly heads up that
this was the case.

Now’s let’s unpack the resulting histogram in Figure 2.11. Observe that values less than 25°F
as well as values above 80°F are rather rare. However, because of the large number of bins, its
hard to get a sense for which range of temperatures is covered by each bin; everything is one
giant amorphous blob. So let’s add white vertical borders demarcating the bins by adding a
color = "white" argument to geom_histogram():

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(color = "white")

61



0

500

1000

1500

25 50 75 100
temp

co
un

t

Figure 2.12: Histogram of hourly temperatures at three NYC airports with white borders

We can now better associate ranges of temperatures to each of the bins. We can also vary the
color of the bars by setting the fill argument. Run colors() to see all 657 possible choice
of colors!

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(color = "white", fill = "steelblue")

62



0

500

1000

1500

25 50 75 100
temp

co
un

t

Figure 2.13: Histogram of hourly temperatures at three NYC airports with white borders

2.5.2 Adjusting the bins

Observe in both Figure 2.12 and Figure 2.13 that in the 50-75°F range there appear to be
roughly 8 bins. Thus each bin has width 25 divided by 8, or roughly 3.12°F which is not a very
easily interpretable range to work with. Let’s now adjust the number of bins in our histogram
in one of two methods:

1. By adjusting the number of bins via the bins argument to geom_histogram().
2. By adjusting the width of the bins via the binwidth argument to geom_histogram().

Using the first method, we have the power to specify how many bins we would like to cut the
x-axis up in. As mentioned in the previous section, the default number of bins is 30. We can
override this default, to say 40 bins, as follows:

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(bins = 40, color = "white")

63



0

500

1000

1500

25 50 75 100
temp

co
un

t

Figure 2.14: Histogram with 40 bins

Using the second method, instead of specifying the number of bins, we specify the width of
the bins by using the binwidth argument in the geom_histogram() layer. For example, let’s
set the width of each bin to be 10°F.

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(binwidth = 10, color = "white")

64



0

1000

2000

3000

4000

5000

0 25 50 75 100
temp

co
un

t

Figure 2.15: Histogram with binwidth 10

� Learning Check 2.14

What does changing the number of bins from 30 to 40 tell us about the distribution of
temperatures?

� Learning Check 2.15

Would you classify the distribution of temperatures as symmetric or skewed?

� Learning Check 2.16

What would you guess is the “center” value in this distribution? Why did you make that
choice?

� Learning Check 2.17

Is this data spread out greatly from the center or is it close? Why?

65



2.5.3 Summary

Histograms, unlike scatterplots and linegraphs, present information on only a single numerical
variable. Specifically, they are visualizations of the distribution of the numerical variable in
question.

2.6 Facets

Before continuing the 5NG, let’s briefly introduce a new concept called faceting. Faceting is
used when we’d like to split a particular visualization of variables by another variable. This
will create multiple copies of the same type of plot with matching x and y axes, but whose
content will differ.

For example, suppose we were interested in looking at how the histogram of hourly temperature
recordings at the three NYC airports we saw in Section 2.5 differed by month. We would “split”
this histogram by the 12 possible months in a given year, in other words plot histograms of
temp for each month. We do this by adding facet_wrap(~ month) layer.

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(binwidth = 5, color = "white") +
facet_wrap(~ month)

66



9 10 11 12

5 6 7 8

1 2 3 4

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

temp

co
un

t

Figure 2.16: Faceted histogram

Note the use of the tilde ~ before month in facet_wrap(). The tilde is required and you’ll
receive the error Error in as.quoted(facets) : object 'month' not found if you don’t
include it before month here. We can also specify the number of rows and columns in the grid
by using the nrow and ncol arguments inside of facet_wrap(). For example, say we would
like our faceted plot to have 4 rows instead of 3. Add the nrow = 4 argument to facet_wrap(~
month)

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(binwidth = 5, color = "white") +
facet_wrap(~ month, nrow = 4)

67



10 11 12

7 8 9

4 5 6

1 2 3

25 50 75 100 25 50 75 100 25 50 75 100

0
200
400
600
800

0
200
400
600
800

0
200
400
600
800

0
200
400
600
800

temp

co
un

t

Figure 2.17: Faceted histogram with 4 instead of 3 rows

Observe in both Figure 2.16 and Figure 2.17 that as we might expect in the Northern Hemi-
sphere, temperatures tend to be higher in the summer months, while they tend to be lower in
the winter.

� Learning Check 2.18

What other things do you notice about the faceted plot above? How does a faceted plot
help us see relationships between two variables?

� Learning Check 2.19

What do the numbers 1-12 correspond to in the plot above? What about 25, 50, 75, 100?

� Learning Check 2.20

For which types of data sets would these types of faceted plots not work well in comparing
relationships between variables? Give an example describing the nature of these variables

68



and other important characteristics.

� Learning Check 2.21

Does the temp variable in the weather data set have a lot of variability? Why do you
say that?

2.7 5NG#4: Boxplots

While faceted histograms are one visualization that allows us to compare distributions of a
numerical variable split by another variable, another visualization that achieves this same goal
are side-by-side boxplots. A boxplot is constructed from the information provided in the five-
number summary of a numerical variable (see Appendix A). To keep things simple for now,
let’s only consider hourly temperature recordings for the month of November in Figure 2.18.

20

30

40

50

60

70

11

te
m

p

Figure 2.18: November temperatures

These 2141 observations have the following five-number summary:

1. Minimum: 21.02°F

69



2. First quartile AKA 25th percentile: 35.96°F
3. Median AKA second quartile AKA 50th percentile: 44.96°F
4. Third quartile AKA 75th percentile: 51.98°F
5. Maximum: 71.06°F

Let’s mark these 5 values with dashed horizontal lines in Figure 2.19.

20

30

40

50

60

70

11

te
m

p

Figure 2.19: November temperatures

Let’s add the boxplot underneath these points and dashed horizontal lines in Figure 2.20.

What the boxplot does summarize the 2141 points by emphasizing that:

1. 25% of points (about 534 observations) fall below the bottom edge of the box, which is
the first quartile of 35.96°F. In other words 25% of observations were colder than 35.96°F.

2. 25% of points fall between the bottom edge of the box and the solid middle line, which
is the median of 44.96°F. In other words 25% of observations were between 35.96 and
44.96°F and 50% of observations were colder than 44.96°F.

3. 25% of points fall between the solid middle line and the top edge of the box, which is the
third quartile of 51.98°F. In other words 25% of observations were between 44.96 and
51.98°F and 75% of observations were colder than 51.98°F.

70



20

30

40

50

60

70

11

te
m

p

Figure 2.20: November temperatures

4. 25% of points fall over the top edge of the box. In other words 25% of observations were
warmer than 51.98°F.

5. The middle 50% of points lie within the interquartile range between the first and third
quartile of 51.98 - 35.96 = 16.02°F.

Lastly, for clarity’s sake let’s remove the points but keep the dashed horizontal lines in Fig-
ure 2.21.

We can now better see the whiskers of the boxplot. They stick out from either end of the
box all the way to the minimum and maximum observed temperatures of 21.02°F and 71.06°F
respectively. However, the whiskers don’t always extend to the smallest and largest observed
values. They in fact can extend no more than 1.5 × the interquartile range from either end
of the box, in this case 1.5 × 16.02°F = 24.03°F from either end of the box. Any observed
values outside this whiskers get marked with points called outliers, which we’ll see in the next
section.

71



20

30

40

50

60

70

11

te
m

p

Figure 2.21: November temperatures

2.7.1 Boxplots via geom_boxplot

Let’s now create a side-by-side boxplot of hourly temperatures split by the 12 months as we did
above with the faceted histograms. We do this by mapping the month variable to the x-position
aesthetic, the temp variable to the y-position aesthetic, and by adding a geom_boxplot()
layer:

ggplot(data = weather, mapping = aes(x = month, y = temp)) +
geom_boxplot()

72



25

50

75

100

3 6 9
month

te
m

p

Figure 2.22: Invalid boxplot specification

Warning messages:
1: Continuous x aesthetic -- did you forget aes(group=...)?
2: Removed 1 rows containing non-finite values (stat_boxplot).

Observe in Figure 2.22 that this plot does not provide information about temperature separated
by month. The warning messages clue us in as to why. The second warning message is identical
to the warning message when plotting a histogram of hourly temperatures: that one of the
values was recorded as NA missing. However, the first warning message is telling us that we
have a “continuous”, or numerical variable, on the x-position aesthetic. Side-by-side boxplots
require one categorical variable and one numeric variable.

We can convert the numerical variable month into a categorical variable by using the factor()
function. So after applying factor(month), month goes from having numerical values 1, 2, …,
12 to having labels “1”, “2”, …, “12.”

ggplot(data = weather, mapping = aes(x = factor(month), y = temp)) +
geom_boxplot()

73



25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12
factor(month)

te
m

p

Figure 2.23: Temp by month boxplot

The resulting Figure 2.23 shows 12 separate “box and whiskers” plots with the features we
saw earlier focusing only on November:

• The “box” portions of this visualization represent the 1st quartile, the median AKA the
2nd quartile, and the 3rd quartile.

• The “length” of each box, i.e. the value of the 3rd quartile minus the value of the 1st

quartile, is the interquartile range. It is a measure of spread of the middle 50% of values,
with longer boxes indicating more variability.

• The “whisker” portions of these plots extend out from the bottoms and tops of the boxes
and represent points less than the 25th percentile and greater than the 75th percentiles
respectively. They’re set to extend out no more than 1.5 × 𝐼𝑄𝑅 units away from either
end of the boxes. We say “no more than” because the ends of the whiskers have to
correspond to observed temperatures. The length of these whiskers show how the data
outside the middle 50% of values vary, with longer whiskers indicating more variability.

• The dots representing values falling outside the whiskers are called outliers. These can
be thought of as anomalous values.

It is important to keep in mind that the definition of an outlier is somewhat arbitrary and
not absolute. In this case, they are defined by the length of the whiskers, which are no

74



more than 1.5 × 𝐼𝑄𝑅 units long. Looking at this plot we can see, as expected, that summer
months (6 through 8) have higher median temperatures as evidenced by the higher solid
lines in the middle of the boxes. We can easily compare temperatures across months by
drawing imaginary horizontal lines across the plot. Furthermore, the height of the 12 boxes
as quantified by the interquartile ranges are informative too; they tell us about variability, or
spread, of temperatures recorded in a given month.

� Learning Check 2.22

What does the dot at the bottom of the plot for May correspond to? Explain what might
have occurred in May to produce this point.

� Learning Check 2.23

Which months have the highest variability in temperature? What reasons can you give
for this?

� Learning Check 2.24

We looked at the distribution of the numerical variable temp split by the numerical
variable month that we converted to a categorical variable using the factor() function.
Why would a boxplot of temp split by the numerical variable pressure similarly converted
to a categorical variable using the factor() not be informative?

� Learning Check 2.25

Boxplots provide a simple way to identify outliers. Why may outliers be easier to identify
when looking at a boxplot instead of a faceted histogram?

2.7.2 Summary

Side-by-side boxplots provide us with a way to compare and contrast the distribution of a
quantitative variable across multiple levels of another categorical variable. One can see where
the median falls across the different groups by looking at the center line in the boxes. To see
how spread out the variable is across the different groups, look at both the width of the box
and also how far the whiskers stretch out away from the box. Outliers are even more easily
identified when looking at a boxplot than when looking at a histogram as they are marked
with points.

75



2.8 5NG#5: Barplots

Both histograms and boxplots are tools to visualize the distribution of numerical variables.
Another common task is visualize the distribution of a categorical variable. This is a simpler
task, as we are simply counting different categories, also known as levels, of a categorical
variable. Often the best way to visualize these different counts, also known as frequencies, is
with a barplot (also known as a barchart). One complication, however, is how your data is
represented: is the categorical variable of interest “pre-counted” or not? For example, run
the following code that manually creates two data frames representing a collection of fruit: 3
apples and 2 oranges.

fruits <- tibble(
fruit = c("apple", "apple", "orange", "apple", "orange")
)

fruits_counted <- tibble(
fruit = c("apple", "orange"),
number = c(3, 2)
)

We see both the fruits and fruits_counted data frames represent the same collection of
fruit. Whereas fruits just lists the fruit individually…

# A tibble: 5 x 1
fruit
<chr>

1 apple
2 apple
3 orange
4 apple
5 orange

… fruits_counted has a variable number which represents pre-counted values of each fruit.

# A tibble: 2 x 2
fruit number
<chr> <dbl>

1 apple 3
2 orange 2

Depending on how your categorical data is represented, you’ll need to use add a different geom
layer to your ggplot() to create a barplot, as we now explore.

76



2.8.1 Barplots via geom_bar or geom_col

Let’s generate barplots using these two different representations of the same basket of fruit: 3
apples and 2 oranges. Using the fruits data frame where all 5 fruits are listed individually in
5 rows, we map the fruit variable to the x-position aesthetic and add a geom_bar() layer.

ggplot(data = fruits, mapping = aes(x = fruit)) +
geom_bar()

0

1

2

3

apple orange
fruit

co
un

t

Figure 2.24: Barplot when counts are not pre-counted

However, using the fruits_counted data frame where the fruit have been “pre-counted”, we
map the fruit variable to the x-position aesthetic as with geom_bar(), but we also map the
count variable to the y-position aesthetic, and add a geom_col() layer.

ggplot(data = fruits_counted, mapping = aes(x = fruit, y = number)) +
geom_col()

77



0

1

2

3

apple orange
fruit

nu
m

be
r

Figure 2.25: Barplot when counts are pre-counted

Compare the barplots in Figure 2.24 and Figure 2.25. They are identical because they reflect
count of the same 5 fruit. However depending on how our data is saved, either pre-counted
or not, we must add a different geom layer. When the categorical variable whose distribution
you want to visualize is:

• Is not pre-counted in your data frame: use geom_bar().
• Is pre-counted in your data frame, use geom_col() with the y-position aesthetic mapped

to the variable that has the counts.

Let’s now go back to the flights data frame in the nycflights13 package and visualize the
distribution of the categorical variable carrier. In other words, let’s visualize the number
of domestic flights out of the three New York City airports each airline company flew in
2013. Recall from Section 1.4.3 when you first explored the flights data frame you saw
that each row corresponds to a flight. In other words the flights data frame is more like
the fruits data frame than the fruits_counted data frame above, and thus we should use
geom_bar() instead of geom_col() to create a barplot. Much like a geom_histogram(), there
is only one variable in the aes() aesthetic mapping: the variable carrier gets mapped to the
x-position.

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar()

78



0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

Figure 2.26: Number of flights departing NYC in 2013 by airline using geom_bar()

Observe in Figure 2.26 that United Air Lines (UA), JetBlue Airways (B6), and ExpressJet
Airlines (EV) had the most flights depart New York City in 2013. If you don’t know which
airlines correspond to which carrier codes, then run View(airlines) to see a directory of
airlines. For example: AA is American Airlines; B6 is JetBlue Airways; DL is Delta Airlines;
EV is ExpressJet Airlines; MQ is Envoy Air; while UA is United Airlines.

Alternatively, say you had a data frame flights_counted where the number of flights for each
carrier was pre-counted like in Table 2.3.

Table 2.3: Number of flights pre-counted for each carrier

Table 2.3: Number of flights pre-counted for each carrier

carrier number
UA 58665
B6 54635
EV 54173
DL 48110
AA 32729
MQ 26397
US 20536
9E 18460
WN 12275
VX 5162
FL 3260
AS 714
F9 685

79



carrier number
YV 601
HA 342
OO 32

In order to create a barplot visualizing the distribution of the categorical variable carrier
in this case, we would use geom_col() instead with x mapped to carrier and y mapped to
number as seen below. The resulting barplot would be identical to Figure 2.26.

ggplot(data = flights_table, mapping = aes(x = carrier, y = number)) +
geom_col()

� Learning Check 2.26

Why are histograms inappropriate for visualizing categorical variables?

� Learning Check 2.27

What is the difference between histograms and barplots?

� Learning Check 2.28

How many Envoy Air flights departed NYC in 2013?

� Learning Check 2.29

What was the seventh highest airline in terms of departed flights from NYC in 2013?
How could we better present the table to get this answer quickly?

2.8.2 Must avoid pie charts!

Unfortunately, one of the most common plots seen today for categorical data is the pie chart.
While they may seem harmless enough, they actually present a problem in that humans are
unable to judge angles well. As Naomi Robbins describes in her book “Creating More Effective
Graphs” (Robbins 2013), we overestimate angles greater than 90 degrees and we underestimate
angles less than 90 degrees. In other words, it is difficult for us to determine relative size of
one piece of the pie compared to another.

Let’s examine the same data used in our previous barplot of the number of flights departing
NYC by airline in Figure 2.26, but this time we will use a pie chart in Figure 2.27.

80



carrier
9E
AA
AS
B6
DL
EV
F9
FL
HA
MQ
OO
UA
US
VX
WN
YV

Figure 2.27: The dreaded pie chart

81



Try to answer the following questions:

• How much larger the portion of the pie is for ExpressJet Airlines (EV) compared to US
Airways (US),

• What the third largest carrier is in terms of departing flights, and
• How many carriers have fewer flights than United Airlines (UA)?

While it is quite difficult to answer these questions when looking at the pie chart in Figure 2.27,
we can much more easily answer these questions using the barchart in Figure Figure 2.26.
This is true since barplots present the information in a way such that comparisons between
categories can be made with single horizontal lines, whereas pie charts present the information
in a way such that comparisons between categories must be made by comparing angles.

There may be one exception of a pie chart not to avoid courtesy Nathan Yau at Flowing-
Data.com, but we will leave this for the reader to decide:

Figure 2.28: The only good pie chart

� Learning Check 2.30

Why should pie charts be avoided and replaced by barplots?

� Learning Check 2.31

Why do you think people continue to use pie charts?

82

https://flowingdata.com/2008/09/19/pie-i-have-eaten-and-pie-i-have-not-eaten/
https://flowingdata.com/2008/09/19/pie-i-have-eaten-and-pie-i-have-not-eaten/


2.8.3 Two categorical variables

Barplots are the go-to way to visualize the frequency of different categories, or levels, of a
single categorical variable. Another use of barplots is to visualize the joint distribution of
two categorical variables at the same time. Let’s examine the joint distribution of outgoing
domestic flights from NYC by carrier and origin, or in other words the number of flights for
each carrier and origin combination. For example, the number of WestJet flights from JFK,
the number of WestJet flights from LGA, the number of WestJet flights from EWR, the number
of American Airlines flights from JFK, and so on. Recall the ggplot() code that created the
barplot of carrier frequency in Figure 2.26:

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

We can now map the additional variable origin by adding a fill = origin inside the aes()
aesthetic mapping; the fill aesthetic of any bar corresponds to the color used to fill the
bars.

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar()

83



0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

Figure 2.29: Stacked barplot comparing the number of flights by carrier and origin

Figure 2.29 is an example of a stacked barplot. While simple to make, in certain aspects it is
not ideal. For example, it is difficult to compare the heights of the different colors between
the bars, corresponding to comparing the number of flights from each origin airport between
the carriers.

Before we continue, let’s address some common points of confusion amongst new R users. First,
note that fill is another aesthetic mapping much like x-position; thus it must be included
within the parentheses of the aes() mapping. The following code, where the fill aesthetic
is specified outside the aes() mapping will yield an error. This is a fairly common error that
new ggplot users make:

ggplot(data = flights, mapping = aes(x = carrier), fill = origin) +
geom_bar()

Second, the fill aesthetic corresponds to the color used to fill the bars, while the color
aesthetic corresponds to the color of the outline of the bars. Observe in Figure 2.30 that
mapping origin to color and not fill yields grey bars with different colored outlines.

ggplot(data = flights, mapping = aes(x = carrier, color = origin)) +
geom_bar()

84



0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

Figure 2.30: Stacked barplot with color aesthetic used instead of fill

� Learning Check 2.32

What kinds of questions are not easily answered by looking at the above figure?

� Learning Check 2.33

What can you say, if anything, about the relationship between airline and airport in NYC
in 2013 in regards to the number of departing flights?

Another alternative to stacked barplots are side-by-side barplots, also known as a dodged barplot.
The code to create a side-by-side barplot is identical to the code to create a stacked barplot,
but with a position = "dodge" argument added to geom_bar(). In other words, we are
overriding the default barplot type, which is a stacked barplot, and specifying it to be a
side-by-side barplot.

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar(position = "dodge")

85



0

10000

20000

30000

40000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV
carrier

co
un

t

origin

EWR

JFK

LGA

Figure 2.31: Side-by-side AKA dodged barplot comparing the number of flights by carrier and
origin

� Learning Check 2.34

Why might the side-by-side (AKA dodged) barplot be preferable to a stacked barplot in
this case?

� Learning Check 2.35

What are the disadvantages of using a side-by-side (AKA dodged) barplot, in general?

Lastly, another type of barplot is a faceted barplot. Recall in Section 2.6 we visualized the
distribution of hourly temperatures at the 3 NYC airports split by month using facets. We
apply the same principle to our barplot visualizing the frequency of carrier split by origin:
instead of mapping origin

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar() +
facet_wrap(~ origin, ncol = 1)

86



LGA

JFK

EWR

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

0

10000

20000

30000

40000

0

10000

20000

30000

40000

0

10000

20000

30000

40000

carrier

co
un

t

Figure 2.32: Faceted barplot comparing the number of flights by carrier and origin

87



� Learning Check 2.36

Why is the faceted barplot preferred to the side-by-side and stacked barplots in this case?

� Learning Check 2.37

What information about the different carriers at different airports is more easily seen in
the faceted barplot?

2.8.4 Summary

Barplots are the preferred way of displaying the distribution of a categorical variable, or in
other words the frequency with which the different categories called levels occur. They are easy
to understand and make it easy to make comparisons across levels. When trying to visualize
two categorical variables, you have many options: stacked barplots, side-by-side barplots,
and faceted barplots. Depending on what aspect of the joint distribution you are trying to
emphasize, you will need to make a choice between these three types of barplots.

2.9 Conclusion

2.9.1 Summary table

Let’s recap all five of the Five Named Graphs (5NG) in Table 2.4 summarizing their differences.
Using these 5NG, you’ll be able to visualize the distributions and relationships of variables
contained in a wide array of datasets. This will be even more the case as we start to map more
variables to more of each geometric object’s aesthetic attribute options, further unlocking the
awesome power of the ggplot2 package.

Table 2.4: Summary of 5NG

Table 2.4: Summary of 5NG

Named
graph Shows Geometric object Notes
ScatterplotRelationship between 2

numerical variables
geom_point()

LinegraphRelationship between 2
numerical variables

geom_line() Used when there is a sequential
order to x-variable e.g. time

88



Named
graph Shows Geometric object Notes
HistogramDistribution of 1

numerical variable
geom_histogram() Facetted histograms show the

distribution of 1 numerical
variable split by the values of
another variable

BoxplotDistribution of 1
numerical variable split
by the values of
another variable

geom_boxplot()

BarplotDistribution of 1
categorical variable

geom_bar() when counts
are not pre-counted,
geom_col() when counts
are pre-counted

Stacked, side-by-side, and
faceted barplots show the joint
distribution of 2 categorical
variables

2.9.2 Argument specification

Run the following two segments of code. First this:

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar()

then this:

ggplot(flights, aes(x = carrier)) +
geom_bar()

You’ll notice that that both code segments create the same barplot, even though in the second
segment we omitted the data = and mapping = code argument names. This is because the
ggplot() by default assumes that the data argument comes first and the mapping argument
comes second. So as long as you specify the data frame in question first and the aes()mapping
second, you can omit the explicit statement of the argument names data = and mapping =.

Going forward for the rest of this book, all ggplot() will be like the second segment above:
with the data = and mapping = explicit naming of the argument omitted and the default
ordering of arguments respected.

89



2.9.3 Additional resources

If you want to further unlock the power of the ggplot2 package for data visualization, we
suggest you that you check out RStudio’s “Data Visualization with ggplot2” cheatsheet. This
cheatsheet summarizes much more than what we’ve discussed in this chapter, in particular
the many more than the 5 geom geometric objects we covered in this Chapter, while providing
quick and easy to read visual descriptions.

You can access this cheatsheet by going to the RStudio Menu Bar -> Help -> Cheatsheets ->
“Data Visualization with ggplot2”:

Figure 2.33: Data Visualization with ggplot2 cheatsheat

90



2.9.4 What’s to come

Recall in Figure 2.2 in Section 2.3 we visualized the relationship between departure delay
and arrival delay for Alaska Airlines flights. This necessitated paring or filtering down the
flights data frame to a new data frame alaska_flights consisting of only carrier == AS
flights first:

alaska_flights <- flights %>%
filter(carrier == "AS")

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point()

Furthermore recall in Figure 2.8 in Section 2.4 we visualized hourly temperature recordings at
Newark airport only for the first 15 days of January 2013. This necessitated paring or fitlering
down the weather data frame to a new data frame early_january_weather consisting of
hourly temperature recordings only for origin == "EWR", month == 1, and day less than or
equal to 15 first:

early_january_weather <- weather %>%
filter(origin == "EWR" & month == 1 & day <= 15)

ggplot(data = early_january_weather, mapping = aes(x = time_hour, y = temp)) +
geom_line()

These two code segments were a preview of Chapter 3 on data wrangling where we’ll delve
further into the dplyr package. Data wrangling is the process of transforming and modifying
existing data with the intent of making it more appropriate for analysis purposes. For example,
the two code segments used the filter() function to create new data frames (alaska_flights
and early_january_weather) by choosing only a subset of rows of existing data frames
(flights and weather). In this next chapter, we’ll formally introduce the filter() and
other data wrangling functions as well as the pipe operator %>% which allows you to combine
multiple data wrangling actions into a single sequential chain of actions. On to Chapter 3 on
data wrangling!

2.10 Exercises

2.10.1 Conceptual

Exercise 2.1. Which of the following layers could be added to create one of the five named
graphs (5NG)? Select all that apply.

91



a) geom_smooth()
b) geom_line()
c) geom_col()
d) geom_box()
e) geom_histogram()
f) facet_wrap()

Exercise 2.2. What layer is add to create a scatterplot?

a) geom_line()
b) geom_scatter()
c) geom_jitter()
d) geom_point()
e) none of the above

Exercise 2.3. Which of the following options are solutions to overplotting? Select all that
apply.

a) Changing the x and y variables
b) Changing the transparency
c) Changing the limits of the x and y axes
d) Plotting only some of the data
e) Jittering the points

Exercise 2.4. When is it useful to facet your data?

a) When you want to see the shape of the entire distribution without separation
b) When you want to split a particular visualization of variables by another variable
c) When you are interested in looking at how your plot differs by year when year is a

continuous variable
d) When you think your variables have incorrect data in them
e) When you have lots of missing values

Exercise 2.5. Consider the following dataset which counts the total number of career wins
for three NBA players. Which layer is added to visualize the distribution of the number of
wins each player had over their career?

player num_wins
Kobe Bryant 1057
LeBron James 1089
Michael Jordan 829

a) geom_bar()

92



b) geom_col()
c) all of the above
d) none of the above

Exercise 2.6. Which of the following graphs would be MOST useful for comparing the
distribution of weights for different species of cats?

a) grouped boxplot
b) histogram
c) stacked barplot
d) scatterplot
e) faceted barplot

Exercise 2.7. Which of the following graphs would be MOST useful for visualizing the daily
weather temperatures in January for Chicago?

a) scatterplot
b) linegraph
c) histogram
d) faceted scatterplot
e) grouped boxplot

Exercise 2.8. Which of the following graphs would be MOST useful for visualizing the
relationship between bank account balances and annual incomes?

a) faceted histogram
b) linegraph
c) scatterplot
d) stacked barplot
e) boxplot

Exercise 2.9. Which of the following graphs would be MOST useful for finding outliers?

a) scatterplot
b) linegraph
c) histogram
d) boxplot
e) barplot

Exercise 2.10. Below is a scatterplot of a fictional dataset depicting the amount of money
spent in a grocery store by the amount of time in the store. Describe the relationship.

93



Exercise 2.11. Describe the modality and skew of the histogram below.

Exercise 2.12. Match the histogram with the corresponding boxplot.

2.10.2 Application

Use the covid_sub dataset created below for the following problem. The dataset is derived
from the covid_states dataset in the ISDSdatasets package.

94



covid_sub <- covid_states %>%
filter(

state_abbr == "IL" | state_abbr == "FL",
date >= "2021-07-01", date <= "2021-08-31",
wday != "Sat", wday != "Sun"
)

You will learn about data wrangling in the next Chapter. The code reads as follows: take the
dataset covid_states and then subset the data to only include observations in the states "IL"
or "FL", and only include observations between July 1, 2021 and August 31, 2021 (inclusive),
and only observations not recorded on Saturday, and observations not recorded on Sunday.
Note: COVID reporting was not done on weekends or holidays in these states.

Exercise 2.13. Plot a linegraph of the number of new COVID cases from July to August
2021 for Illinois and Florida. Use the color aesthetic to have separate lines for each state.
Compare and describe the linegraph.

Use the nba dataset in the ISDSdatasets package for exercises Exercise 2.14, Exercise 2.15,
and Exercise 2.16.

Exercise 2.14. Describe and compare the number of wins and losses faceted by player using
a barplot.

Exercise 2.15. Plot and describe the relationship between field goal percentage (fg_percent)
and free throw percentage (ft_percent). Adjust for overplotting if need be.

Exercise 2.16. Compare the center, spread, and shape of the distribution of pts scored per
game by player for regular season games and playoff games. In other words, facet the plot of
pts by player based on season.

2.10.3 Advanced

Let’s learn some advanced plotting features.

Exercise 2.17. Start with your plot from Exercise 2.13. Let’s clean up the graph a little by
adding the following layers:

a) add on theme_minimal()

95



b) remove the x-axis label by setting x = NULL in the labs()
c) To make the x-axis text easier to read we will rotate it 45 degrees and horizontally align it

on the right. Add the layer theme(axis.text.x = element_text(angle = ?, hjust
= ?)) but replace the ? with the appropriate values.

Exercise 2.18. Use the nba_pct dataset created below to plot the average free throw percent
for each player.

nba_pct <- nba %>%
group_by(player) %>%
summarize(avg_ft_pct = mean(ft_percent, na.rm = TRUE))

a) Change the y-axis label to percents by adding the following layer scale_y_*(labels =
scales::percent). Replace the * with the data type. May be useful to check the help
documentation.

b) Reorder the x-axis from highest to lowest with the following layer: scale_x_*(limits =
c("Kobe Bryant", "Michael Jordan", "LeBron James")). Again replace the * with
the appropriate data type.

96



3 Data Wrangling

So far in our journey, we’ve seen how to look at data saved in data frames using the glimpse()
and View() functions in Chapter 1 on and how to create data visualizations using the ggplot2
package in Chapter 2. In particular we studied what we term the “five named graphs” (5NG):

1. scatterplots via geom_point()
2. linegraphs via geom_line()
3. boxplots via geom_boxplot()
4. histograms via geom_histogram()
5. barplots via geom_bar() or geom_col()

We created these visualizations using the “Grammar of Graphics”, which maps variables in
a data frame to the aesthetic attributes of one the above 5 geometric objects. We can also
control other aesthetic attributes of the geometric objects such as the size and color as seen in
the Gapminder data example in Figure 2.1.

Recall however in Section 2.9.4 we discussed that for two of our visualizations we needed
transformed/modified versions of existing data frames. Recall for example the scatterplot of
departure and arrival delay only for Alaska Airlines flights. In order to create this visualization,
we needed to first pare down the flights data frame to a new data frame alaska_flights
consisting of only carrier == "AS" flights using the filter() function.

alaska_flights <- flights %>%
filter(carrier == "AS")

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point()

In this chapter, we’ll introduce a series of functions from the dplyr package that will allow
you to take a data frame and

1. filter() its existing rows to only pick out a subset of them. For example, the
alaska_flights data frame above.

2. summarize() one of its columns/variables with a summary statistic. Examples include
the median and interquartile range of temperatures as we saw in Section 2.7 on boxplots.

97



3. group_by() its rows. In other words assign different rows to be part of the same group
and report summary statistics for each group separately. For example, say perhaps
you don’t want a single overall average departure delay dep_delay for all three origin
airports combined, but rather three separate average departure delays, one for each of
the three origin airports.

4. mutate() its existing columns/variables to create new ones. For example, convert hourly
temperature recordings from °F to °C.

5. arrange() its rows. For example, sort the rows of weather in ascending or descending
order of temp.

6. join() it with another data frame by matching along a “key” variable. In other words,
merge these two data frames together.

Notice how we used computer code font to describe the actions we want to take on our data
frames. This is because the dplyr package for data wrangling that we’ll introduce in this
chapter has intuitively verb-named functions that are easy to remember.

We’ll start by introducing the pipe operator %>%, which allows you to combine multiple data
wrangling verb-named functions into a single sequential chain of actions.

Packages Needed

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(dplyr)
library(ggplot2)
library(nycflights13)

3.1 The pipe operator: %>%

Before we start data wrangling, let’s first introduce a very nifty tool that gets loaded along
with the dplyr package: the pipe operator %>%. Say you would like to perform a hypothetical
sequence of operations on a hypothetical data frame x using hypothetical functions f(), g(),
and h():

1. Take x then
2. Use x as an input to a function f() then
3. Use the output of f(x) as an input to a function g() then
4. Use the output of g(f(x)) as an input to a function h()

98



One way to achieve this sequence of operations is by using nesting parentheses as follows:

h(g(f(x)))

The above code isn’t so hard to read since we are applying only three functions: f(), then
g(), then h(). However, you can imagine that this can get progressively harder and harder
to read as the number of functions applied in your sequence increases. This is where the pipe
operator %>% comes in handy. %>% takes one output of one function and then “pipes” it to
be the input of the next function. Furthermore, a helpful trick is to read %>% as “then.” For
example, you can obtain the same output as the above sequence of operations as follows:

x %>%
f() %>%
g() %>%
h()

You would read this above sequence as:

1. Take x then
2. Use this output as the input to the next function f() then
3. Use this output as the input to the next function g() then
4. Use this output as the input to the next function h()

So while both approaches above would achieve the same goal, the latter is much more human-
readable because you can read the sequence of operations line-by-line. But what are the
hypothetical x, f(), g(), and h()? Throughout this chapter on data wrangling:

• The starting value x will be a data frame. For example: flights.

• The sequence of functions, here f(), g(), and h(), will be a sequence of any number of
the 6 data wrangling verb-named functions we listed in the introduction to this chapter.
For example: filter(carrier == "AS").

• The result will be the transformed/modified data frame that you want. For example:
a data frame consisting of only the subset of rows in flights corresponding to Alaska
Airlines flights.

Much like when adding layers to a ggplot() using the + sign at the end of lines, you form
a single chain of data wrangling operations by combining verb-named functions into a single
sequence with pipe operators %>% at the end of lines. So continuing our example involving
Alaska Airlines flights, we form a chain using the pipe operator %>% and save the resulting
data frame in alaska_flights:

99



alaska_flights <- flights %>%
filter(carrier == "AS")

Keep in mind, there are many more advanced data wrangling functions than just the 6 listed in
the introduction to this chapter; you’ll see some examples of these in Section 3.8. However, just
with these 6 verb-named functions you’ll be able to perform a broad array of data wrangling
tasks for the rest of this book.

3.2 filter() rows

Figure 3.1: Diagram of filter()

The filter() function here works much like the “Filter” option in Microsoft Excel; it allows
you to specify criteria about the values of a variable in your dataset and then filters out only
those rows that match that criteria. We begin by focusing only on flights from New York City
to Portland, Oregon. The dest code (or airport code) for Portland, Oregon is "PDX". Run the
following and look at the resulting spreadsheet to ensure that only flights heading to Portland
are chosen here:

portland_flights <- flights %>%
filter(dest == "PDX")

View(portland_flights)

Note the following:

• The ordering of the commands:

– Take the flights data frame flights then
– filter the data frame so that only those where the dest equals "PDX" are included.

100



• We test for equality using the double equal sign == and not a single equal sign =. In
other words filter(dest = "PDX") will yield an error. This is a convention across
many programming languages. If you are new to coding, you’ll probably forget to use
the double equal sign == a few times before you get the hang of it.

You can use other mathematical operations beyond just == to form criteria:

• > corresponds to “greater than”
• < corresponds to “less than”
• >= corresponds to “greater than or equal to”
• <= corresponds to “less than or equal to”
• != corresponds to “not equal to”. The ! is used in many programming languages to

indicate “not”.

Furthermore, you can combine multiple criteria together using operators that make compar-
isons:

• | corresponds to “or”
• & corresponds to “and”

To see many of these in action, let’s filter flights for all rows that:

• Departed from JFK airport and
• Were heading to Burlington, Vermont ("BTV") or Seattle, Washington ("SEA") and
• Departed in the months of October, November, or December.

Run the following:

btv_sea_flights_fall <- flights %>%
filter(origin == "JFK" & (dest == "BTV" | dest == "SEA") & month >= 10)

View(btv_sea_flights_fall)

Note that even though colloquially speaking one might say “all flights leaving Burlington,
Vermont and Seattle, Washington,” in terms of computer operations, we really mean “all
flights leaving Burlington, Vermont or leaving Seattle, Washington.” For a given row in the
data, dest can be “BTV”, “SEA”, or something else, but not “BTV” and “SEA” at the same
time. Furthermore, note the careful use of parentheses around the dest == "BTV" | dest
== "SEA".

We can often skip the use of & and just separate our conditions with a comma. In other words
the code above will return the identical output btv_sea_flights_fall as this code below:

101



btv_sea_flights_fall <- flights %>%
filter(origin == "JFK", (dest == "BTV" | dest == "SEA"), month >= 10)

View(btv_sea_flights_fall)

Let’s present another example that uses the ! “not” operator to pick rows that don’t match
a criteria. As mentioned earlier, the ! can be read as “not.” Here we are filtering rows
corresponding to flights that didn’t go to Burlington, VT or Seattle, WA.

not_BTV_SEA <- flights %>%
filter(!(dest == "BTV" | dest == "SEA"))

View(not_BTV_SEA)

Again, note the careful use of parentheses around the (dest == "BTV" | dest == "SEA").
If we didn’t use parentheses as follows:

flights %>%
filter(!dest == "BTV" | dest == "SEA")

We would be returning all flights not headed to "BTV" or those headed to "SEA", which is an
entirely different resulting data frame.

Now say we have a large list of airports we want to filter for, say BTV, SEA, PDX, SFO, and BDL.
We could continue to use the | or operator as so:

many_airports <- flights %>%
filter(dest == "BTV" | dest == "SEA" | dest == "PDX" | dest == "SFO" | dest == "BDL")

View(many_airports)

but as we progressively include more airports, this will get unwieldy. A slightly shorter ap-
proach uses the %in% operator:

many_airports <- flights %>%
filter(dest %in% c("BTV", "SEA", "PDX", "SFO", "BDL"))

View(many_airports)

102



What this code is doing is filtering flights for all flights where dest is in the list of air-
ports c("BTV", "SEA", "PDX", "SFO", "BDL"). Recall from Chapter 1 that the c() func-
tion “combines” or “concatenates” values in a vector of values. Both outputs of many_airports
are the same, but as you can see the latter takes much less time to code.

As a final note we point out that filter() should often be among the first verbs you apply
to your data. This cleans your dataset to only those rows you care about, or put differently,
it narrows down the scope of your data frame to just the observations you care about.

� Learning Check 3.1

What’s another way of using the “not” operator ! to filter only the rows that are not
going to Burlington VT nor Seattle WA in the flights data frame? Test this out using
the code above.

3.3 summarize() variables

The next common task when working with data is to return summary statistics: a single
numerical value that summarizes a large number of values, for example the mean/average or
the median. Other examples of summary statistics that might not immediately come to mind
include the sum, the smallest value AKA the minimum, the largest value AKA the maximum,
and the standard deviation; they are all summaries of a large number of values.

Figure 3.2: Summarize diagram from Data Wrangling with dplyr and tidyr cheatsheet

103



Figure 3.3: Another summarize diagram from Data Wrangling with dplyr and tidyr

Let’s calculate the mean and the standard deviation of the temperature variable temp in the
weather data frame included in the nycflights13 package (See Appendix A). We’ll do this
in one step using the summarize() function from the dplyr package and save the results in a
new data frame summary_temp with columns/variables mean and the std_dev. Note you can
also use the UK spelling of summarise().

The weather data frame’s many rows will now be collapsed into a single row of just the
summary values, in this case the mean and standard deviation:

summary_temp <- weather %>%
summarize(mean = mean(temp), std_dev = sd(temp))

summary_temp

# A tibble: 1 x 2
mean std_dev
<dbl> <dbl>

1 NA NA

Why are the values returned NA? As we saw in Section 2.3.1 when creating the scatterplot of
departure and arrival delays for alaska_flights, NA is how R encodes missing values where
NA indicates “not available” or “not applicable.” If a value for a particular row and a particular
column does not exist, NA is stored instead. Values can be missing for many reasons. Perhaps
the data was collected but someone forgot to enter it? Perhaps the data was not collected at
all because it was too difficult? Perhaps there was an erroneous value that someone entered
that has been correct to read as missing? You’ll often encounter issues with missing values
when working with real data.

Going back to our summary_temp output above, by default any time you try to calculate
a summary statistic of a variable that has one or more NA missing values in R, then NA is
returned. To work around this fact, you can set the na.rm argument to TRUE, where rm is

104



short for “remove”; this will ignore any NA missing values and only return the summary value
for all non-missing values.

The code below computes the mean and standard deviation of all non-missing values of temp.
Notice how the na.rm=TRUE are used as arguments to the mean() and sd() functions individ-
ually, and not to the summarize() function.

summary_temp <- weather %>%
summarize(mean = mean(temp, na.rm = TRUE),

std_dev = sd(temp, na.rm = TRUE))

summary_temp

# A tibble: 1 x 2
mean std_dev
<dbl> <dbl>

1 55.3 17.8

However, one needs to be cautious whenever ignoring missing values as we’ve done above. In
the upcoming Learning Checks we’ll consider the possible ramifications of blindly sweeping
rows with missing values “under the rug.” This is in fact why the na.rm argument to any
summary statistic function in R has is set to FALSE by default; in other words, do not ignore
rows with missing values by default. R is alerting you to the presence of missing data and you
should by mindful of this missingness and any potential causes of this missingness throughout
your analysis.

What are other functions for summary statistics can we use inside the summarize() verb? We
can use any function in R that takes many values and returns just one. Here are just a few:

• mean(): the mean AKA the average

• sd(): the standard deviation, which is a measure of spread

• min() and max(): the minimum and maximum values respectively

• IQR(): Interquartile range

• sum(): the sum

• n(): a count of the number of rows/observations in each group. This particular summary
function will make more sense when group_by() is covered in Section 3.4.

105



� Learning Check 3.2

Say a doctor is studying the effect of smoking on lung cancer for a large number of
patients who have records measured at five year intervals. She notices that a large
number of patients have missing data points because the patient has died, so she chooses
to ignore these patients in her analysis. What is wrong with this doctor’s approach?

� Learning Check 3.3

Modify the above summarize() function to create summary_temp to also use the n()
summary function: summarize(count = n()).
What does the returned value correspond to?

� Learning Check 3.4

Why doesn’t the following code work?

summary_temp <- weather %>%
summarize(mean = mean(temp, na.rm = TRUE)) %>%
summarize(std_dev = sd(temp, na.rm = TRUE))

Hint: Run the code line by line instead of all at once, and then look at the data.
In other words, run summary_temp <- weather %>% summarize(mean = mean(temp,
na.rm = TRUE)) first.

3.4 group_by() rows

Figure 3.4: Group by and summarize diagram from Data Wrangling with dplyr and tidyr
cheatsheet

106



Say instead of the a single mean temperature for the whole year, you would like 12 mean
temperatures, one for each of the 12 months separately? In other words, we would like to
compute the mean temperature split by month AKA sliced by month AKA aggregated by
month. We can do this by “grouping” temperature observations by the values of another
variable, in this case by the 12 values of the variable month. Run the following code:

summary_monthly_temp <- weather %>%
group_by(month) %>%
summarize(mean = mean(temp, na.rm = TRUE),

std_dev = sd(temp, na.rm = TRUE))

summary_monthly_temp

# A tibble: 12 x 3
month mean std_dev
<int> <dbl> <dbl>

1 1 35.6 10.2
2 2 34.3 6.98
3 3 39.9 6.25
4 4 51.7 8.79
5 5 61.8 9.68
6 6 72.2 7.55
7 7 80.1 7.12
8 8 74.5 5.19
9 9 67.4 8.47
10 10 60.1 8.85
11 11 45.0 10.4
12 12 38.4 9.98

This code is identical to the previous code that created summary_temp, but with an extra
group_by(month) added before the summarize(). Grouping the weather dataset by month
and then applying the summarize() functions yields a data frame that displays the mean and
standard deviation temperature split by the 12 months of the year.

It is important to note that the group_by() function doesn’t change data frame by itself.
Rather it changes the meta-data, or data about the data, specifically the group structure. It is
only after we apply the summarize() function that the data frame changes. For example, let’s
consider the diamonds data frame included in the ggplot2 package. Run this code, specifically
in the console:

diamonds

107



# A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
# i 53,930 more rows

Observe that the first line of the output reads # A tibble: 53,940 x 10. This is an example
of meta-data, in this case the number of observations/rows and variables/columns in diamonds.
The actual data itself are the subsequent table of values.

Now let’s pipe the diamonds data frame into group_by(cut). Run this code, specifically in
the console:

diamonds %>%
group_by(cut)

# A tibble: 53,940 x 10
# Groups: cut [5]

carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
# i 53,930 more rows

Observe that now there is additional meta-data: # Groups: cut [5] indicating that the
grouping structure meta-data has been set based on the 5 possible values AKA levels of the

108



categorical variable cut: "Fair", "Good", "Very Good", "Premium", "Ideal". On the other
hand observe that the data has not changed: it is still a table of 53,940 × 10 values.

Only by combining a group_by() with another data wrangling operation, in this case
summarize() will the actual data be transformed.

diamonds %>%
group_by(cut) %>%
summarize(avg_price = mean(price))

# A tibble: 5 x 2
cut avg_price
<ord> <dbl>

1 Fair 4359.
2 Good 3929.
3 Very Good 3982.
4 Premium 4584.
5 Ideal 3458.

If we would like to remove this group structure meta-data, we can pipe the resulting data
frame into the ungroup() function. Observe how the # Groups: cut [5] meta-data is no
longer present. Run this code, specifically in the console:

diamonds %>%
group_by(cut) %>%
ungroup()

# A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
# i 53,930 more rows

109



Let’s now revisit n() the counting summary function introduced in the previous section. For
example, suppose we’d like to count how many flights departed each of the three airports in
New York City:

by_origin <- flights %>%
group_by(origin) %>%
summarize(count = n())

by_origin

# A tibble: 3 x 2
origin count
<chr> <int>

1 EWR 120835
2 JFK 111279
3 LGA 104662

We see that Newark ("EWR") had the most flights departing in 2013 followed by "JFK" and
lastly by LaGuardia ("LGA"). Note there is a subtle but important difference between sum()
and n(); While sum() returns the sum of a numerical variable, n() returns counts of the
number of rows/observations.

3.4.1 Grouping by more than one variable

You are not limited to grouping by one variable! Say you wanted to know the number of flights
leaving each of the three New York City airports for each month, we can also group by a second
variable month: group_by(origin, month). We see there are 36 rows to by_origin_monthly
because there are 12 months for 3 airports (EWR, JFK, and LGA).

by_origin_monthly <- flights %>%
group_by(origin, month) %>%
summarize(count = n())

by_origin_monthly

# A tibble: 36 x 3
# Groups: origin [3]

origin month count
<chr> <int> <int>

1 EWR 1 9893

110



2 EWR 2 9107
3 EWR 3 10420
4 EWR 4 10531
5 EWR 5 10592
6 EWR 6 10175
7 EWR 7 10475
8 EWR 8 10359
9 EWR 9 9550
10 EWR 10 10104
# i 26 more rows

Why do we group_by(origin, month) and not group_by(origin) and then group_by(month)?
Let’s investigate:

by_origin_monthly_incorrect <- flights %>%
group_by(origin) %>%
group_by(month) %>%
summarize(count = n())

by_origin_monthly_incorrect

# A tibble: 12 x 2
month count
<int> <int>

1 1 27004
2 2 24951
3 3 28834
4 4 28330
5 5 28796
6 6 28243
7 7 29425
8 8 29327
9 9 27574
10 10 28889
11 11 27268
12 12 28135

What happened here is that the second group_by(month) overrode the group structure meta-
data of the first group_by(origin), so that in the end we are only grouping by month. The
lesson here is if you want to group_by() two or more variables, you should include all these
variables in a single group_by() function call.

111



� Learning Check 3.5

Recall from Chapter 2 when we looked at plots of temperatures by months in NYC.
What does the standard deviation column in the summary_monthly_temp data frame tell
us about temperatures in New York City throughout the year?

� Learning Check 3.6

What code would be required to get the mean and standard deviation temperature for
each day in 2013 for NYC?

� Learning Check 3.7

Recreate by_monthly_origin, but instead of grouping via group_by(origin, month),
group variables in a different order group_by(month, origin).
What differs in the resulting dataset?

� Learning Check 3.8

How could we identify how many flights left each of the three airports for each carrier?

� Learning Check 3.9

How does the filter operation differ from a group_by followed by a summarize?

3.5 mutate existing variables

Figure 3.5: Mutate diagram from Data Wrangling with dplyr and tidyr cheatsheet

Another common transformation of data is to create/compute new variables based on existing
ones. For example, say you are more comfortable thinking of temperature in degrees Celsius

112



°C and not degrees Fahrenheit °F. The formula to convert temperatures from °F to °C is:

temp in C = temp in F − 32
1.8

We can apply this formula to the temp variable using the mutate() function, which takes
existing variables and mutates them to create new ones.

weather <- weather %>%
mutate(temp_in_C = (temp-32)/1.8)

View(weather)

Note that we have overwritten the original weather data frame with a new version that now
includes the additional variable temp_in_C. In other words, the mutate() command outputs a
new data frame which then gets saved over the original weather data frame. Furthermore, note
how in mutate() we used temp_in_C = (temp-32)/1.8 to create a new variable temp_in_C.

Why did we overwrite the data frame weather instead of assigning the result to a new data
frame like weather_new, but on the other hand why did we not overwrite temp, but instead
created a new variable called temp_in_C? As a rough rule of thumb, as long as you are not losing
original information that you might need later, it’s acceptable practice to overwrite existing
data frames. On the other hand, had we used mutate(temp = (temp-32)/1.8) instead of
mutate(temp_in_C = (temp-32)/1.8), we would have overwritten the original variable temp
and lost its values.

Let’s compute average monthly temperatures in both °F and °C using the similar group_by()
and summarize() code as in the previous section.

summary_monthly_temp <- weather %>%
group_by(month) %>%
summarize(

mean_temp_in_F = mean(temp, na.rm = TRUE),
mean_temp_in_C = mean(temp_in_C, na.rm = TRUE)
)

summary_monthly_temp

# A tibble: 12 x 3
month mean_temp_in_F mean_temp_in_C
<int> <dbl> <dbl>

1 1 35.6 2.02
2 2 34.3 1.26

113



3 3 39.9 4.38
4 4 51.7 11.0
5 5 61.8 16.6
6 6 72.2 22.3
7 7 80.1 26.7
8 8 74.5 23.6
9 9 67.4 19.7
10 10 60.1 15.6
11 11 45.0 7.22
12 12 38.4 3.58

Let’s consider another example. Passengers are often frustrated when their flights depart late,
but change their mood a bit if pilots can make up some time during the flight to get them to
their destination close to the original arrival time. This is commonly referred to as “gain” and
we will create this variable using the mutate() function.

flights <- flights %>%
mutate(gain = dep_delay - arr_delay)

Let’s take a look at dep_delay, arr_delay, and the resulting gain variables for the first 5
rows in our new flights data frame:

# A tibble: 5 x 3
dep_delay arr_delay gain

<dbl> <dbl> <dbl>
1 2 11 -9
2 4 20 -16
3 2 33 -31
4 -1 -18 17
5 -6 -25 19

The flight in the first row departed 2 minutes late but arrived 11 minutes late, so its “gained
time in the air” is actually a loss of 9 minutes, hence its gain is -9. Contrast this to the flight
in the fourth row which departed a minute early (dep_delay of -1) but arrived 18 minutes
early (arr_delay of -18), so its “gained time in the air” is 17 minutes, hence its gain is +17.

Let’s look at summary measures of this gain variable and even plot it in the form of a his-
togram:

114



gain_summary <- flights %>%
summarize(

min = min(gain, na.rm = TRUE),
q1 = quantile(gain, 0.25, na.rm = TRUE),
median = quantile(gain, 0.5, na.rm = TRUE),
q3 = quantile(gain, 0.75, na.rm = TRUE),
max = max(gain, na.rm = TRUE),
mean = mean(gain, na.rm = TRUE),
sd = sd(gain, na.rm = TRUE),
missing = sum(is.na(gain))

)

gain_summary

min q1 median q3 max mean sd missing
-196 -3 7 17 109 5.66 18 9430

We’ve recreated the summary function we saw in Chapter 2 here using the summarize function
in dplyr.

ggplot(data = flights, mapping = aes(x = gain)) +
geom_histogram(color = "white", bins = 20)

115



0

25000

50000

75000

100000

125000

−200 −100 0 100
gain

co
un

t

Figure 3.6: Histogram of gain variable

We can also create multiple columns at once and even refer to columns that were just created
in a new column. Hadley and Garrett produce one such example in Chapter 5 of “R for Data
Science” (Grolemund and Wickham 2016):

flights <- flights %>%
mutate(

gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours

)

� Learning Check 3.10

What do positive values of the gain variable in flights correspond to? What about
negative values? And what about a zero value?

116



� Learning Check 3.11

Could we create the dep_delay and arr_delay columns by simply subtracting dep_time
from sched_dep_time and similarly for arrivals? Try the code out and explain any
differences between the result and what actually appears in flights.

� Learning Check 3.12

What can we say about the distribution of gain? Describe it in a few sentences using
the plot and the gain_summary data frame values.

3.6 arrange() and sort rows

One of the most common tasks people working with data would like to perform is sort the
data frame’s rows in alphanumeric order of the values in a variable/column. For example,
when calculating a median by hand requires you to first sort the data from the smallest to
highest in value and then identify the “middle” value. The dplyr package has a function called
arrange() that we will use to sort/reorder a data frame’s rows according to the values of the
specified variable. This is often used after we have used the group_by() and summarize()
functions as we will see.

Let’s suppose we were interested in determining the most frequent destination airports for all
domestic flights departing from New York City in 2013:

freq_dest <- flights %>%
group_by(dest) %>%
summarize(num_flights = n())

freq_dest

# A tibble: 105 x 2
dest num_flights
<chr> <int>

1 ABQ 254
2 ACK 265
3 ALB 439
4 ANC 8
5 ATL 17215
6 AUS 2439
7 AVL 275
8 BDL 443

117



9 BGR 375
10 BHM 297
# i 95 more rows

Observe that by default the rows of the resulting freq_dest data frame are sorted in alpha-
betical order of dest destination. Say instead we would like to see the same data, but sorted
from the most to the least number of flights num_flights instead:

freq_dest %>%
arrange(num_flights)

# A tibble: 105 x 2
dest num_flights
<chr> <int>

1 LEX 1
2 LGA 1
3 ANC 8
4 SBN 10
5 HDN 15
6 MTJ 15
7 EYW 17
8 PSP 19
9 JAC 25
10 BZN 36
# i 95 more rows

This is actually giving us the opposite of what we are looking for: the rows are sorted with
the least frequent destination airports displayed first. To switch the ordering to be descending
instead of ascending we use the desc() function, which is short for “descending”:

freq_dest %>%
arrange(desc(num_flights))

# A tibble: 105 x 2
dest num_flights
<chr> <int>

1 ORD 17283
2 ATL 17215
3 LAX 16174
4 BOS 15508
5 MCO 14082

118



6 CLT 14064
7 SFO 13331
8 FLL 12055
9 MIA 11728
10 DCA 9705
# i 95 more rows

In other words, arrange() sorts in ascending order by default unless you override this default
behavior by using desc().

3.7 join data frames

Another common data transformation task is “joining” or “merging” two different datasets.
For example in the flights data frame the variable carrier lists the carrier code for the
different flights. While the corresponding airline names for "UA" and "AA" might be somewhat
easy to guess (United and American Airlines), what airlines have codes? "VX", "HA", and
"B6"? This information is provided in a separate data frame airlines.

View(airlines)

We see that in airlines, carrier is the carrier code while name is the full name of the
airline company. Using this table, we can see that "VX", "HA", and "B6" correspond to Virgin
America, Hawaiian Airlines, and JetBlue respectively. However, wouldn’t it be nice to have
all this information in a single data frame instead of two separate data frames? We can do
this by “joining” i.e. “merging” the flights and airlines data frames.

Note that the values in the variable carrier in the flights data frame match the values
in the variable carrier in the airlines data frame. In this case, we can use the variable
carrier as a key variable to match the rows of the two data frames. Key variables are almost
always identification variables that uniquely identify the observational units. This ensures
that rows in both data frames are appropriately matched during the join. Hadley and Garrett
(Grolemund and Wickham 2016) created the following diagram to help us understand how the
different datasets are linked by various key variables:

3.7.1 Matching “key” variable names

In both the flights and airlines data frames, the key variable we want to join/merge/match
the rows of the two data frames by have the same name: carriers. We make use of the
inner_join() function to join the two data frames, where the rows will be matched by the
variable carrier.

119



Figure 3.7: Data relationships in nycflights13 from R for Data Science

flights_joined <- flights %>%
inner_join(airlines, by = "carrier")

View(flights)
View(flights_joined)

Observe that the flights and flights_joined data frames are identical except that
flights_joined has an additional variable name whose values correspond to the airline
company names drawn from the airlines data frame.

A visual representation of the inner_join() is given below (Grolemund and Wickham 2016).
There are other types of joins available (such as left_join(), right_join(), outer_join(),
and anti_join()), but the inner_join() will solve nearly all of the problems you’ll encounter
in this book.

Figure 3.8: Diagram of inner join from R for Data Science

120



3.7.2 Different “key” variable names

Say instead you are interested in the destinations of all domestic flights departing NYC in
2013 and ask yourself:

• “What cities are these airports in?”
• “Is "ORD" Orlando?”
• “Where is "FLL"?

The airports data frame contains airport codes:

View(airports)

However, considering the visual representation (Figure 3.7) of the relations between the
datasets airports and flights, we see that:

• the airports data frame the airport code is in the variable faa
• the flights data frame the airport codes are in the variables origin and dest

We need to join these two data frames so that we can identify the destination cities. For
example, our inner_join() operation will use the by = c("dest" = "faa") argument, which
allows us to join two data frames where the key variable has a different name:

flights_with_airport_names <- flights %>%
inner_join(airports, by = c("dest" = "faa"))

View(flights_with_airport_names)

Let’s construct the sequence of commands that computes the number of flights from NYC to
each destination, but also includes information about each destination airport:

named_dests <- flights %>%
group_by(dest) %>%
summarize(num_flights = n()) %>%
arrange(desc(num_flights)) %>%
inner_join(airports, by = c("dest" = "faa")) %>%
rename(airport_name = name)

named_dests

121



# A tibble: 101 x 9
dest num_flights airport_name lat lon alt tz dst tzone
<chr> <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 ORD 17283 Chicago Ohare Intl 42.0 -87.9 668 -6 A Amer~
2 ATL 17215 Hartsfield Jackson At~ 33.6 -84.4 1026 -5 A Amer~
3 LAX 16174 Los Angeles Intl 33.9 -118. 126 -8 A Amer~
4 BOS 15508 General Edward Lawren~ 42.4 -71.0 19 -5 A Amer~
5 MCO 14082 Orlando Intl 28.4 -81.3 96 -5 A Amer~
6 CLT 14064 Charlotte Douglas Intl 35.2 -80.9 748 -5 A Amer~
7 SFO 13331 San Francisco Intl 37.6 -122. 13 -8 A Amer~
8 FLL 12055 Fort Lauderdale Holly~ 26.1 -80.2 9 -5 A Amer~
9 MIA 11728 Miami Intl 25.8 -80.3 8 -5 A Amer~
10 DCA 9705 Ronald Reagan Washing~ 38.9 -77.0 15 -5 A Amer~
# i 91 more rows

In case you didn’t know, "ORD" is the airport code of Chicago O’Hare airport and "FLL" is the
main airport in Fort Lauderdale, Florida, which we can now see in the airport_name variable
in the resulting named_dests data frame.

3.7.3 Multiple “key” variables

Say instead we are in a situation where we need to join by multiple variables. For example,
in Figure 3.7 above we see that in order to join the flights and weather data frames, we
need more than one key variable: year, month, day, hour, and origin. This is because the
combination of these 5 variables act to uniquely identify each observational unit in the weather
data frame: hourly weather recordings at each of the 3 NYC airports.

We achieve this by specifying a vector of key variables to join by using the c() function for
“combine” or “concatenate” that we saw earlier:

flights_weather_joined <- flights %>%
inner_join(weather, by = c("year", "month", "day", "hour", "origin"))

View(flights_weather_joined)

� Learning Check 3.13

Looking at Figure 3.7, when joining flights and weather (or, in other words, matching
the hourly weather values with each flight), why do we need to join by all of year, month,
day, hour, and origin, and not just hour?

122



� Learning Check 3.14

What surprises you about the top 10 destinations from NYC in 2013?

3.7.4 Normal forms

The data frames included in the nycflights13 package are in a form that minimizes redun-
dancy of data. For example, the flights data frame only saves the carrier code of the
airline company; it does not include the actual name of the airline. For example the first row
of flights has carrier equal to UA, but it does not include the airline name “United Air Lines
Inc.” The names of the airline companies are included in the name variable of the airlines
data frame. In order to have the airline company name included in flights, we could join
these two data frames as follows:

joined_flights <- flights %>%
inner_join(airlines, by = "carrier")

View(joined_flights)

We are capable of performing this join because each of the data frames have keys in common
to relate one to another: the carrier variable in both the flights and airlines data frames.
The key variable(s) that we join are often identification variables we mentioned previously.

This is an important property of what’s known as normal forms of data. The process
of decomposing data frames into less redundant tables without losing information is called
normalization. More information is available on Wikipedia.

� Learning Check 3.15

What are some advantages of data in normal forms? What are some disadvantages?

3.8 Other verbs

Here are some other useful data wrangling verbs that might come in handy:

• select() only a subset of variables/columns
• rename() variables/columns to have new names
• Return only the top_n() values of a variable

123

https://en.wikipedia.org/wiki/Database_normalization


3.8.1 select() variables

Figure 3.9: Select diagram from Data Wrangling with dplyr and tidyr cheatsheet

We’ve seen that the flights data frame in the nycflights13 package contains 19 different
variables. You can identify the names of these 19 variables by running the glimpse() function
from the dplyr package:

glimpse(flights)

However, say you only need two of these variables, say carrier and flight. You can select()
these two variables:

flights %>%
select(carrier, flight)

This function makes exploring data frames with a very large number of variables easier for
humans to process by restricting consideration to only those we care about, like our example
with carrier and flight above. This might make viewing the dataset using the View()
spreadsheet viewer more digestible. However, as far as the computer is concerned, it doesn’t
care how many additional variables are in the data frame in question, so long as carrier and
flight are included.

Let’s say instead you want to drop i.e deselect certain variables. For example, take the variable
year in the flights data frame. This variable isn’t quite a “variable” in the sense that all
the values are 2013 i.e. it doesn’t change. Say you want to remove the year variable from the
data frame; we can deselect year by using the - sign:

flights_no_year <- flights %>%
select(-year)

glimpse(flights_no_year)

124



Another way of selecting columns/variables is by specifying a range of columns:

flight_arr_times <- flights %>%
select(month:day, arr_time:sched_arr_time)

flight_arr_times

The select() function can also be used to reorder columns in combination with the
everything() helper function. Let’s suppose we’d like the hour, minute, and time_hour
variables, which appear at the end of the flights dataset, to appear immediately after the
year, month, and day variables while keeping the rest of the variables. In the code below
everything() picks up all remaining variables.

flights_reorder <- flights %>%
select(year, month, day, hour, minute, time_hour, everything())

glimpse(flights_reorder)

Lastly, the helper functions starts_with(), ends_with(), and contains() can be used to
select variables/column that match those conditions. For example:

flights_begin_a <- flights %>%
select(starts_with("a"))

flights_begin_a

flights_delays <- flights %>%
select(ends_with("delay"))

flights_delays

flights_time <- flights %>%
select(contains("time"))

flights_time

3.8.2 rename() variables

Another useful function is rename(), which as you may have guessed renames one column
to another name. Suppose we want dep_time and arr_time to be departure_time and
arrival_time instead in the flights_time data frame:

125



flights_time <- flights %>%
select(contains("time")) %>%
rename(departure_time = dep_time,

arrival_time = arr_time)

glimpse(flights_time)

Note that in this case we used a single = sign within the rename(), for example departure_time
= dep_time. This is because we are not testing for equality like we would using ==, but instead
we want to assign a new variable departure_time to have the same values as dep_time and
then delete the variable dep_time. It’s easy to forget if the new name comes before or after
the equals sign. I usually remember this as “New Before, Old After” or NBOA.

3.8.3 slice() data by a variable

We can return observations with maximum or minimum values of a variable using the
slice_max() or slice_min(). For example, we can get the observations the top 10
destination airports using the example from Section 3.7.2. Observe that we set the number
of values to return to n = 10 and order_by = num_flights to indicate that we want the
rows corresponding to the top 10 values of num_flights. See the help file for the different
slice_*() functions by running ?slice for more information.

named_dests %>%
slice_max(n = 10, order_by = num_flights)

named_dests %>%
slice_min(n = 10, order_by = num_flights)

� Learning Check 3.16

What are some ways to select all three of the dest, air_time, and distance variables
from flights? Give the code showing how to do this in at least three different ways.

� Learning Check 3.17

How could one use starts_with, ends_with, and contains to select columns from the
flights data frame? Provide three different examples in total: one for starts_with,
one for ends_with, and one for contains.

126



� Learning Check 3.18

Why might we want to use the select function on a data frame?

� Learning Check 3.19

Create a new data frame that shows the top 5 airports with the largest arrival delays
from NYC in 2013.

3.9 Conclusion

3.9.1 Summary table

Let’s recap our data wrangling verbs in Table 3.2. Using these verbs and the pipe %>% operator
from Section 3.1, you’ll be able to write easily legible code to perform almost all the data
wrangling necessary for the rest of this book.

Table 3.2: Summary of data wrangling verbs

Table 3.2: Summary of data wrangling verbs

Verb Data wrangling operation
filter() Pick out a subset of rows
summarize()Summarize many values to one using a summary statistic function like mean(),

median(), etc.
group_by() Add grouping structure to rows in data frame. Note this does not change values

in data frame, rather only the meta-data
mutate() Create new variables by mutating existing ones
arrange() Arrange rows of a data variable in ascending (default) or descending order
inner_join()Join/merge two data frames, matching rows by a key variable

3.9.2 Additional resources

If you want to further unlock the power of the dplyr package for data wrangling, we sug-
gest you that you check out RStudio’s “Data Transformation with dplyr” cheatsheet. This
cheatsheet summarizes much more than what we’ve discussed in this chapter, in particular
more-intermediate level and advanced data wrangling functions, while providing quick and
easy to read visual descriptions.

127



You can access this cheatsheet by going to the RStudio Menu Bar -> Help -> Cheatsheets ->
“Data Transformation with dplyr”:

Figure 3.10: Data Transformation with dplyr cheatsheat

On top of data wrangling verbs and examples we presented in this section, if you’d like to see
more examples of using the dplyr package for data wrangling check out Chapter 5 of Garrett
Grolemund and Hadley Wickham’s and Garrett’s book (Grolemund and Wickham 2016).

3.9.3 What’s to come?

So far in this book, we’ve explored, visualized, and wrangled data saved in data frames that
are in spreadsheet-type format: rectangular with a certain number of rows corresponding
to observations and a certain number of columns corresponding to variables describing the
observations.

128

http://r4ds.had.co.nz/transform.html


We’ll see in Chapter 4 that there are actually two ways to represent data in spreadsheet-type
rectangular format: 1) “wide” format and 2) “tall/narrow” format also known in R circles as
“tidy” format. While the distinction between “tidy” and non-“tidy” formatted data is very
subtle, it has very important implications for whether or not we can use the ggplot2 package
for data visualization and the dplyr package for data wrangling.

Furthermore, we’ve only explored, visualized, and wrangled data saved within R packages.
What if you have spreadsheet data saved in a Microsoft Excel, Google Sheets, or “Comma-
Separated Values” (CSV) file that you would like to analyze? In Chapter 4, we’ll show you
how to import this data into R using the readr package.

3.10 Exercises

3.10.1 Conceptual

Exercise 3.1. Consider the sequence of operations a(b(c(x))). Which of the following would
result in the output of this sequence?

a) x %>% a() %>% b() %>% c()
b) a() %>% b() %>% c() %>% x
c) x %>% c() %>% b() %>% a()
d) c() %>% b() %>% a() %>% x
e) none of the above

Exercise 3.2. Match the definition with the function name.

a) top_n() c. mutate() e. group_by() g. filter()

b) select() d. arrange() f. summarize()

___ sort a data frame’s rows based on a specified variable

___ only keep rows that match a criteria

___ create new variables based on existing ones

Exercise 3.3. How many rows and columns are outputted from the following code?

weather_summary <- weather %>%
group_by(month)%>%
summarize(min = min(gain, na.rm = TRUE),

max = max(gain, na.rm = TRUE),
mean = mean(gain, na.rm = TRUE),
sd = sd(gain, na.rm = TRUE))

weather_summary

129



a. 12 rows and 5 columns
b. 5 rows and 12 columns
c. 1 row and 4 columns
d. 4 rows and 12 column
e. 12 rows and 4 column

Exercise 3.4. Why might we want to use the select function on a data frame?

a) To make exploring a data frame easier by sorting the rows in alphanumeric order
b) To make exploring a data frame easier by only outputting the variables of interest
c) To make exploring a data frame easier by filtering out only rows that match a specified

criteria

Exercise 3.5. How would the mean of a distribution change if the (positive) maximum value
was doubled?

a) increase
b) decrease
c) stay the same
d) not enough information

Exercise 3.6. The ___ are resistant to outliers/extreme values, whereas the ___ are not.

a) mean and standard deviation; median and interquartile range
b) standard deviation and interquartile range; mean and median
c) median and interquartile range; mean and standard deviation
d) mean and median; standard deviation and interquartile range
e) median and standard deviation; mean and interquartile range

Exercise 3.7. Consider a unimodal left skewed distribution. Which of the following is true?

a) mean > median
b) mean < median
c) mean = median
d) not enough information

Exercise 3.8. Looking at Figure 3.7, when joining flights and weather (or, in other words,
matching the hourly weather values with each flight), why do we need to join by all of year,
month, day, hour, and origin, and not just hour?

a) These key variables uniquely identify the observational units
b) These key variables provide a timestamp on when we accessed our data
c) These variables refer to multiple observational units simultaneously

130



d) These variables are not all necessary

For Exercise 3.9 - Exercise 3.11 consider a hypothetical dataset blue_line. This dataset
documents all passenger train ride information on the Chicago blue line rail for one week.
The variables include day of travel, passenger gender, passenger age, duration of ride, and
whether the ride was roundtrip (1) or not (0). The first few observations are shown below.

day gender age duration roundtrip
Monday female 23 33 1
Thursday male 48 50 0
Monday female 35 20 1
Saturday other 26 42 1
… … … … …

Exercise 3.9. Compute the average length of a train ride for each day of the week.

a) blue_line %>% summarize(mean = mean(duration))

b) blue_line %>% group_by(day, duration) %>% summarize(mean = mean(duration))

c) blue_line %>% summarize(mean = mean(duration)) %>% group_by(day)

d) blue_line %>% group_by(day) %>% summarize(mean = mean(duration))

e) none of the above

Exercise 3.10. The mean and standard deviation for duration of only female passengers?

a) blue_line %>% select(gender == "female") %>% summarize(mean =
mean(duration), sd = sd(duration))

b) blue_line %>% filter(gender) %>% summarize(mean = mean(duration), sd
= sd(duration))

c) blue_line %>% summarize(mean = mean(duration), sd = sd(duration)) %>%
filter(gender == "female")

d) blue_line %>% filter(gender == "female") %>% summarize(mean =
mean(duration)) %>% summarize(sd = sd(duration))

e) none of the above

Exercise 3.11. Which of the following will NOT count the number of passengers by gender
and day. Select all that apply.

a) blue_line %>% group_by(gender) %>% summarize(n = n(day))

131



b) blue_line %>% count(gender, day)

c) blue_line %>% group_by(gender, day) %>% summarize(n = n())

d) blue_line %>% group_by(gender) %>% count(day)

e) blue_line %>% group_by(gender, day) %>% summarize(n = sum(passengers))

3.10.2 Application

Exercise 3.12. Recall our nba dataset that includes data from each game that Michael Jordan,
Kobe Bryant and Lebron James played. Compute the average number of free throws made
per game by each player.

Exercise 3.13. Create a variable called spread calculated from pts_tm - pts_opp. Using
code, determine who played the game with the largest win spread and how much they won by.

Exercise 3.14. Using the titanic dataset, calculate the total revenue that the ship received
from passengers in each class. Store the output in an object called fare_calc. Print the
contents such that the total revenue is sorted from high to low.

Exercise 3.15. Using the covid_states dataset, calculate the total new_confirmed,
new_deceased, new_recovered and new_tested for each state. Then join this summa-
rized dataset with the covid_dem dataset, join the two datasets into one dataset called
covid_joined.

3.10.3 Advanced

Exercise 3.16. When you are using filter, you need to specify each criteria separately.
This can get repetitive if you are trying to filter on multiple criteria for the same variable.
Consider the covid_states dataset, what if we are interested in only the 4 most populous
states? This would include state_abbr CA, TX, FL, and NY. Instead of listing (state_abbr
== "CA", state_abbr == "TX", state_abbr == "FL", state_abbr == "NY") we can use
the %in% function to condense this.

Try typing state_abbr %in% followed by the vector of states within filter to subset the
dataset. Call this new dataset covid_pop.

Exercise 3.17. Using the covid_pop dataset created in Exercise 3.16, calculate the total
weekly new_confirmed COVID cases in 2021 for each state. Plot the total weekly cases to
determine if the 4 states had a similar trend.

When working with dates you will want to use the lubridate package. Create a new variable
week by using the function week(date).

132



4 Data Importing & “Tidy Data”

In Subsection 1.2.2 we introduced the concept of a data frame: a rectangular spreadsheet-
like representation of data in R where the rows correspond to observations and the columns
correspond to variables describing each observation. In Section 1.4, we started exploring our
first data frame: the flights data frame included in the nycflights13 package. In Chapter 2
we created visualizations based on the data included in flights and other data frames such
as weather. In Chapter 3, we learned how to wrangle data, in other words take existing data
frames and transform/ modify them to suit our analysis goals.

In this final chapter of the “Data Science via the tidyverse” portion of the book, we extend
some of these ideas by discussing a type of data formatting called “tidy” data. You will see
that having data stored in “tidy” format is about more than what the colloquial definition of
the term “tidy” might suggest: having your data “neatly organized.” Instead, we define the
term “tidy” in a more rigorous fashion, outlining a set of rules by which data can be stored,
and the implications of these rules for analyses.

Although knowledge of this type of data formatting was not necessary for our treatment of
data visualization in Chapter 2 and data wrangling in Chapter 3 since all the data was already
in “tidy” format, we’ll now see this format is actually essential to using the tools we covered
in these two chapters. Furthermore, it will also be useful for all subsequent chapters in this
book when we cover regression and statistical inference. First however, we’ll show you how to
import spreadsheet data for use in R.

Packages Needed

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(dplyr)
library(ggplot2)
library(readr)
library(tidyr)
library(nycflights13)
library(fivethirtyeight)

133



4.1 Importing data

Up to this point, we’ve almost entirely used data stored inside of an R package. Say instead
you have your own data saved on your computer or somewhere online? How can you analyze
this data in R? Spreadsheet data is often saved in one of the following formats:

• A Comma Separated Values .csv file. You can think of a .csv file as a bare-bones
spreadsheet where:

– Each line in the file corresponds to one row of data/one observation.
– Values for each line are separated with commas. In other words, the values of

different variables are separated by commas.
– The first line is often, but not always, a header row indicating the names of the

columns/variables.

• An Excel .xlsx file. This format is based on Microsoft’s proprietary Excel software.
As opposed to a bare-bones .csv files, .xlsx Excel files contain a lot of meta-data, or
put more simply, data about the data. (Recall we saw a previous example of meta-data
in Section 3.4 when adding “group structure” meta-data to a data frame by using the
group_by() verb.) Some examples of spreadsheet meta-data include the use of bold and
italic fonts, colored cells, different column widths, and formula macros.

• A Google Sheets file, which is a “cloud” or online-based way to work with a spread-
sheet. Google Sheets allows you to download your data in both comma separated values
.csv and Excel .xlsx formats however: go to the Google Sheets menu bar -> File ->
Download as -> Select “Microsoft Excel” or “Comma-separated values.”

We’ll cover two methods for importing .csv and .xlsx spreadsheet data in R: one using the
R console and the other using RStudio’s graphical user interface, abbreviated a GUI.

4.1.1 Using the console

First, let’s import a Comma Separated Values .csv file of data directly off the internet. The
.csv file dem_score.csv accessible at https://moderndive.com/data/dem_score.csv contains
ratings of the level of democracy in different countries spanning 1952 to 1992. Let’s use the
read_csv() function from the readr package to read it off the web, import it into R, and save
it in a data frame called dem_score

library(readr)
dem_score <- read_csv("https://moderndive.com/data/dem_score.csv")
dem_score

134

https://www.google.com/sheets/about/
https://moderndive.com/data/dem_score.csv


# A tibble: 96 x 10
country `1952` `1957` `1962` `1967` `1972` `1977` `1982` `1987` `1992`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Albania -9 -9 -9 -9 -9 -9 -9 -9 5
2 Argentina -9 -1 -1 -9 -9 -9 -8 8 7
3 Armenia -9 -7 -7 -7 -7 -7 -7 -7 7
4 Australia 10 10 10 10 10 10 10 10 10
5 Austria 10 10 10 10 10 10 10 10 10
6 Azerbaijan -9 -7 -7 -7 -7 -7 -7 -7 1
7 Belarus -9 -7 -7 -7 -7 -7 -7 -7 7
8 Belgium 10 10 10 10 10 10 10 10 10
9 Bhutan -10 -10 -10 -10 -10 -10 -10 -10 -10
10 Bolivia -4 -3 -3 -4 -7 -7 8 9 9
# i 86 more rows

In this dem_score data frame, the minimum value of -10 corresponds to a highly autocratic
nation whereas a value of 10 corresponds to a highly democratic nation. We’ll revisit the
dem_score data frame in a case study in the upcoming Section 4.3.

Note that the read_csv() function included in the readr package is different than the
read.csv() function that comes installed with R by default. While the difference in the
names might seem near meaningless (an _ instead of a .), the read_csv() function is in our
opinion easier to use since it can more easily read data off the web and generally imports data
at a much faster speed.

4.1.2 Using RStudio’s interface

Let’s read in the exact same data saved in Excel format, but this time via RStudio’s graphical
interface instead of via the R console. First download the Excel file dem_score.xlsx by
clicking here, then

1. Go to the Files panel of RStudio.
2. Navigate to the directory i.e. folder on your computer where the downloaded

dem_score.xlsx Excel file is saved.
3. Click on dem_score.xlsx.
4. Click “Import Dataset…”

At this point you should see an image like this:

135

https://moderndive.com/data/dem_score.xlsx


After clicking on the “Import” button on the bottom right RStudio, RStudio will save this
spreadsheet’s data in a data frame called dem_score and display its contents in the spread-
sheet viewer. Furthermore, note in the bottom right of the above image there exists a “Code
Preview”: you can copy and paste this code to reload your data again later automatically
instead of repeating the above manual point-and-click process.

4.2 Tidy data

Let’s now switch gears and learn about the concept of “tidy” data format by starting with a
motivating example. Let’s consider the drinks data frame included in the fivethirtyeight
data. Run the following:

drinks

# A tibble: 193 x 5
country beer_servings spirit_servings wine_servings total_litres_of_pure~1
<chr> <int> <int> <int> <dbl>

1 Afghanist~ 0 0 0 0
2 Albania 89 132 54 4.9
3 Algeria 25 0 14 0.7
4 Andorra 245 138 312 12.4
5 Angola 217 57 45 5.9
6 Antigua &~ 102 128 45 4.9

136



7 Argentina 193 25 221 8.3
8 Armenia 21 179 11 3.8
9 Australia 261 72 212 10.4
10 Austria 279 75 191 9.7
# i 183 more rows
# i abbreviated name: 1: total_litres_of_pure_alcohol

After reading the help file by running ?drinks, we see that drinks is a data frame containing
results from a survey of the average number of servings of beer, spirits, and wine consumed
for 193 countries. This data was originally reported on the data journalism website FiveThir-
tyEight.com in Mona Chalabi’s article “Dear Mona Followup: Where Do People Drink The
Most Beer, Wine And Spirits?”

Let’s apply some of the data wrangling verbs we learned in Chapter 3 on the drinks data
frame. Let’s

1. filter() the drinks data frame to only consider 4 countries (the United States, China,
Italy, and Saudi Arabia) then

2. select() all columns except total_litres_of_pure_alcohol by using - sign, then

3. rename() the variables beer_servings, spirit_servings, and wine_servings to beer,
spirit, and wine respectively

and save the resulting data frame in drinks_smaller.

drinks_smaller <- drinks %>%
filter(country %in% c("USA", "China", "Italy", "Saudi Arabia")) %>%
select(-total_litres_of_pure_alcohol) %>%
rename(beer = beer_servings, spirit = spirit_servings, wine = wine_servings)

drinks_smaller

# A tibble: 4 x 4
country beer spirit wine
<chr> <int> <int> <int>

1 China 79 192 8
2 Italy 85 42 237
3 Saudi Arabia 0 5 0
4 USA 249 158 84

Using the drinks_smaller data frame, how would we create the side-by-side AKA dodged
barplot in Figure 4.1? Recall we saw barplots displaying two categorical variables in Sec-
tion 2.8.3.

137

https://fivethirtyeight.com/features/dear-mona-followup-where-do-people-drink-the-most-beer-wine-and-spirits/
https://fivethirtyeight.com/features/dear-mona-followup-where-do-people-drink-the-most-beer-wine-and-spirits/


0

50

100

150

200

250

China Italy Saudi Arabia USA
country

se
rv

in
gs

type

beer

spirit

wine

Figure 4.1: Alcohol consumption in 4 countries

Let’s break down the Grammar of Graphics:

1. The categorical variable country with four levels (China, Italy, Saudi Arabia, USA)
would have to be mapped to the x-position of the bars.

2. The numerical variable servings would have to be mapped to the y-position of the bars,
in other words the height of the bars.

3. The categorical variable type with three levels (beer, spirit, wine) who have to be mapped
to the fill color of the bars.

Observe however that drinks_smaller has three separate variables for beer, spirit, and
wine, whereas in order to recreate the side-by-side AKA dodged barplot in Figure 4.1 we
would need a single variable type with three possible values: beer, spirit, and wine, which
we would then map to the fill aesthetic. In other words, for us to be able to create the
barplot in Figure 4.1, our data frame would have to look like this:

drinks_smaller_tidy

# A tibble: 12 x 3
country type servings
<chr> <chr> <int>

138



1 China beer 79
2 China spirit 192
3 China wine 8
4 Italy beer 85
5 Italy spirit 42
6 Italy wine 237
7 Saudi Arabia beer 0
8 Saudi Arabia spirit 5
9 Saudi Arabia wine 0
10 USA beer 249
11 USA spirit 158
12 USA wine 84

Let’s compare the drinks_smaller_tidy with the drinks_smaller data frame from earlier:

drinks_smaller

# A tibble: 4 x 4
country beer spirit wine
<chr> <int> <int> <int>

1 China 79 192 8
2 Italy 85 42 237
3 Saudi Arabia 0 5 0
4 USA 249 158 84

Observe that while drinks_smaller and drinks_smaller_tidy are both rectangular in shape
and contain the same 12 numerical values (3 alcohol types × 4 countries), they are format-
ted differently. drinks_smaller is formatted in what’s known as “wide” format, whereas
drinks_smaller_tidy is formatted in what’s known as “long/narrow”. In the context of
using R, long/narrow format is also known as “tidy” format. Furthermore, in order to use
the ggplot2 and dplyr packages for data visualization and data wrangling, your input data
frames must be in “tidy” format. So all non-“tidy” data must be converted to “tidy” format
first.

Before we show you how to convert non-“tidy” data frames like drinks_smaller to “tidy”
data frames like drinks_smaller_tidy, let’s go over the explicit definition of “tidy” data.

4.2.1 Definition of “tidy” data

You have surely heard the word “tidy” in your life:

• “Tidy up your room!”

139

https://en.wikipedia.org/wiki/Wide_and_narrow_data
https://en.wikipedia.org/wiki/Wide_and_narrow_data#Narrow


• “Please write your homework in a tidy way so that it is easier to grade and to provide
feedback.”

• Marie Kondo’s best-selling book The Life-Changing Magic of Tidying Up: The Japanese
Art of Decluttering and Organizing and Netflix TV series Tidying Up with Marie Kondo.

• “I am not by any stretch of the imagination a tidy person, and the piles of unread books
on the coffee table and by my bed have a plaintive, pleading quality to me - ‘Read me,
please!’ ” - Linda Grant

What does it mean for your data to be “tidy”? While “tidy” has a clear English meaning
of “organized”, “tidy” in the context of data science using R means that your data follows a
standardized format. We will follow Hadley Wickham’s definition of tidy data here (Wickham
2014):

A dataset is a collection of values, usually either numbers (if quantitative) or strings
AKA text data (if qualitative). Values are organised in two ways. Every value be-
longs to a variable and an observation. A variable contains all values that measure
the same underlying attribute (like height, temperature, duration) across units. An
observation contains all values measured on the same unit (like a person, or a day,
or a city) across attributes.

Tidy data is a standard way of mapping the meaning of a dataset to its structure.
A dataset is messy or tidy depending on how rows, columns and tables are matched
up with observations, variables and types. In tidy data:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Figure 4.2: Tidy data graphic from R for Data Science

For example, say you have the following table of stock prices in Table 4.1:

140

https://www.amazon.com/Life-Changing-Magic-Tidying-Decluttering-Organizing/dp/1607747308/ref=sr_1_1?ie=UTF8&qid=1469400636&sr=8-1&keywords=tidying+up
https://www.amazon.com/Life-Changing-Magic-Tidying-Decluttering-Organizing/dp/1607747308/ref=sr_1_1?ie=UTF8&qid=1469400636&sr=8-1&keywords=tidying+up
https://www.netflix.com/title/80209379
http://r4ds.had.co.nz/tidy-data.html


Table 4.1: Stock Prices (Non-Tidy Format)

Table 4.1: Stock Prices (Non-Tidy Format)

Date Boeing Stock Price Amazon Stock Price Google Stock Price
2009-01-01 $173.55 $174.90 $174.34
2009-01-02 $172.61 $171.42 $170.04

Although the data are neatly organized in a rectangular spreadsheet-type format, they are not
in tidy format because while there are three variables corresponding to three unique pieces
of information (Date, Stock Name, and Stock Price), there are not three columns. In “tidy”
data format each variable should be its own column, as shown in Table 4.2). Notice that both
tables present the same information, but in different formats.

Table 4.2: Stock Prices (Tidy Format)

Table 4.2: Stock Prices (Tidy Format)

Date Stock Name Stock Price
2009-01-01 Boeing $173.55
2009-01-01 Amazon $174.90
2009-01-01 Google $174.34
2009-01-02 Boeing $172.61
2009-01-02 Amazon $171.42
2009-01-02 Google $170.04

Now we have the requisite three columns Date, Stock Name, and Stock Price. On the other
hand, consider the data in Table 4.3.

Table 4.3: Date, Boeing Price, Weather Data

Table 4.3: Date, Boeing Price, Weather Data

Date Boeing Price Weather
2009-01-01 $173.55 Sunny
2009-01-02 $172.61 Overcast

In this case, even though the variable “Boeing Price” occurs just like in our non-“tidy” data
in Table 4.1), the data is “tidy” since there are three variables corresponding to three unique
pieces of information: Date, Boeing stock price, and the weather that particular day.

141



� Learning Check 4.1

What are common characteristics of “tidy” data frames?

� Learning Check 4.2

What makes “tidy” data frames useful for organizing data?

4.2.2 Converting to “tidy” data

In this book so far, you’ve only seen data frames that were already in “tidy” format. Further-
more for the rest of this book, you’ll mostly only see data frames that are already in “tidy”
format as well. This is not always the case however with data in the wild. If your original
data frame is in wide i.e. non-“tidy” format and you would like to use the ggplot2 package
for data visualization or the dplyr package for data wrangling, you will first have to convert
it to “tidy” format using the pivot_longer() function in the tidyr package (Wickham and
Girlich 2022).

Going back to our drinks_smaller data frame from earlier:

drinks_smaller

# A tibble: 4 x 4
country beer spirit wine
<chr> <int> <int> <int>

1 China 79 192 8
2 Italy 85 42 237
3 Saudi Arabia 0 5 0
4 USA 249 158 84

We convert it to “tidy” format by using the pivot_longer() function from the tidyr package
as follows:

# tidy drinks_smaller
drinks_smaller_tidy <- drinks_smaller %>%
pivot_longer(

cols = -country,
names_to = "type",
values_to = "servings"

)

142



# print
drinks_smaller_tidy

# A tibble: 12 x 3
country type servings
<chr> <chr> <int>

1 China beer 79
2 China spirit 192
3 China wine 8
4 Italy beer 85
5 Italy spirit 42
6 Italy wine 237
7 Saudi Arabia beer 0
8 Saudi Arabia spirit 5
9 Saudi Arabia wine 0
10 USA beer 249
11 USA spirit 158
12 USA wine 84

We set the arguments to pivot_longer() as follows:

1. The first argument, cols, are the columns you either want to or don’t want to tidy.
Observe how we set this to -country indicating that we don’t want to tidy the country
variable in drinks_smaller which leaves beer, spirit, and wine to be tidied.

2. names_to is the name of the column/variable in the new “tidy” frame that contains
the column names of the original data frame that you want to tidy. Observe how we
set names_to = "type" and in the resulting drinks_smaller_tidy the column type
contains the three types of alcohol beer, spirit, and wine.

3. values_to is the name of the column/variable in the “tidy” frame that contains the
rows and columns of values in the original data frame you want to tidy. Observe how we
set values_to = "servings" and in the resulting drinks_smaller_tidy the column
servings contains the 4 × 3 = 12 numerical values.

The first argument, cols, is a little nuanced, so let’s consider another example. Note the code
below is very similar, but now the first argument specifies which columns we’d want to tidy
c(beer, spirit, wine), instead of the columns we don’t want to tidy -country. Note the
use of c() to create a vector of the columns in drinks_smaller that we’d like to tidy. If you
run the code below, you’ll see that the result is as drinks_smaller_tidy.

143



# tidy drinks_smaller
drinks_smaller %>%
pivot_longer(

cols = c(beer, spirit, wine),
names_to = "type",
values_to = "servings"
)

With our drinks_smaller_tidy “tidy” format data frame, we can now produce a side-by-side
AKA dodged barplot using geom_col() and not geom_bar(), since we would like to map the
servings variable to the y-aesthetic of the bars.

ggplot(drinks_smaller_tidy, aes(x=country, y=servings, fill=type)) +
geom_col(position = "dodge")

0

50

100

150

200

250

China Italy Saudi Arabia USA
country

se
rv

in
gs

type

beer

spirit

wine

Converting “wide” format data to “tidy” format often confuses new R users. The only way to
learn to get comfortable with the pivot_longer() function is with practice, practice, and more
practice. For example, see the examples in the bottom of the help file for pivot_longer() by
running ?pivot_longer. We’ll show another example of using pivot_longer() to convert a

144



“wide” formatted data frame to “tidy” format in Section 4.3. For other examples of converting
a dataset into “tidy” format, check out the different functions available for data tidying and a
case study using data from the World Health Organization in R for Data Science (Grolemund
and Wickham 2016).

� Learning Check 4.3

Take a look the airline_safety data frame included in the fivethirtyeight data. Run
the following:

airline_safety

After reading the help file by running ?airline_safety, we see that airline_safety
is a data frame containing information on different airlines companies’ safety records.
This data was originally reported on the data journalism website FiveThirtyEight.com
in Nate Silver’s article “Should Travelers Avoid Flying Airlines That Have Had Crashes
in the Past?”. Let’s ignore the incl_reg_subsidiaries and avail_seat_km_per_week
variables for simplicity:

airline_safety_smaller <- airline_safety %>%
select(-c(incl_reg_subsidiaries, avail_seat_km_per_week))

airline_safety_smaller

# A tibble: 56 x 7
airline incidents_85_99 fatal_accidents_85_99 fatalities_85_99
<chr> <int> <int> <int>

1 Aer Lingus 2 0 0
2 Aeroflot 76 14 128
3 Aerolineas Argentinas 6 0 0
4 Aeromexico 3 1 64
5 Air Canada 2 0 0
6 Air France 14 4 79
7 Air India 2 1 329
8 Air New Zealand 3 0 0
9 Alaska Airlines 5 0 0
10 Alitalia 7 2 50
# i 46 more rows
# i 3 more variables: incidents_00_14 <int>, fatal_accidents_00_14 <int>,
# fatalities_00_14 <int>

This data frame is not in “tidy” format. How would you convert this data frame to be
in “tidy” format, in particular so that it has a variable incident_type_years indicating
the incident type/year and a variable count of the counts?

145

http://r4ds.had.co.nz/tidy-data.html
https://fivethirtyeight.com/features/should-travelers-avoid-flying-airlines-that-have-had-crashes-in-the-past/
https://fivethirtyeight.com/features/should-travelers-avoid-flying-airlines-that-have-had-crashes-in-the-past/


4.2.3 nycflights13 package

Recall the nycflights13 package with data about all domestic flights departing from New
York City in 2013 that we introduced in Section 1.4 and used extensively in Chapter 2 on
data visualization and Chapter 3 on data wrangling. Let’s revisit the flights data frame
by running View(flights). We saw that flights has a rectangular shape with each of its
336,776 rows corresponding to a flight and each of its 19 columns corresponding to different
characteristics/measurements of each flight. This matches exactly with our definition of “tidy”
data from above.

1. Each variable forms a column.
2. Each observation forms a row.

But what about the third property of “tidy” data?

3. Each type of observational unit forms a table.

Recall that we also saw in Section 1.4.3 that the observational unit for the flights data
frame is an individual flight. In other words, the rows of the flights data frame refer to
characteristics/measurements of individual flights. Also included in the nycflights13 package
are other data frames with their rows representing different observational units (Wickham
2021):

• airlines: translation between two letter IATA carrier codes and names (16 in total).
i.e. the observational unit is an airline company.

• planes: construction information about each of 3,322 planes used. i.e. the observational
unit is an aircraft.

• weather: hourly meteorological data (about 8705 observations) for each of the three
NYC airports. i.e. the observational unit is an hourly measurement.

• airports: airport names and locations. i.e. the observational unit is an airport.

The organization of the information into these five data frames follow the third “tidy” data
property: observations corresponding to the same observational unit should be saved in the
same table i.e. data frame. You could think of this property as the old English expression:
“birds of a feather flock together.”

4.3 Case study: Democracy in Guatemala

In this section, we’ll show you another example of how to convert a data frame that isn’t in
“tidy” format i.e. “wide” format, to a data frame that is in “tidy” format i.e. “long/narrow”

146



format. We’ll do this using the pivot_longer() function from the tidyr package again. Fur-
thermore, we’ll make use of some of the ggplot2 data visualization and dplyr data wrangling
tools you learned in Chapters Chapter 2 and Chapter 3.

Let’s use the dem_score data frame we imported in Section 4.1, but focus on only data
corresponding to Guatemala.

guat_dem <- dem_score %>%
filter(country == "Guatemala")

guat_dem

# A tibble: 1 x 10
country `1952` `1957` `1962` `1967` `1972` `1977` `1982` `1987` `1992`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Guatemala 2 -6 -5 3 1 -3 -7 3 3

Now let’s produce a time-series plot showing how the democracy scores have changed over the
40 years from 1952 to 1992 for Guatemala. Recall that we saw time-series plot in Section 2.4
on creating linegraphs using geom_line(). Let’s lay out the Grammar of Graphics we saw in
Section 2.1.

First we know we need to set data = guat_dem and use a geom_line() layer, but what is the
aesthetic mapping of variables. We’d like to see how the democracy score has changed over
the years, so we need to map:

• year to the x-position aesthetic and
• democracy_score to the y-position aesthetic

Now we are stuck in a predicament, much like with our drinks_smaller example in sec-tidy-
data-ex. We see that we have a variable named country, but its only value is "Guatemala".
We have other variables denoted by different year values. Unfortunately, the guat_dem data
frame is not “tidy” and hence is not in the appropriate format to apply the Grammar of
Graphics and thus we cannot use the ggplot2 package. We need to take the values of the
columns corresponding to years in guat_dem and convert them into a new “key” variable called
year. Furthermore, we’d like to take the democracy scores on the inside of the table and turn
them into a new “value” variable called democracy_score. Our resulting data frame will thus
have three columns: country, year, and democracy_score.

Recall that the pivot_longer() function in the tidyr package can complete this task for
us:

147



guat_dem_tidy <- guat_dem %>%
pivot_longer(

cols = -country,
names_to = "year",
values_to = "democracy_score"

)

guat_dem_tidy

# A tibble: 9 x 3
country year democracy_score
<chr> <chr> <dbl>

1 Guatemala 1952 2
2 Guatemala 1957 -6
3 Guatemala 1962 -5
4 Guatemala 1967 3
5 Guatemala 1972 1
6 Guatemala 1977 -3
7 Guatemala 1982 -7
8 Guatemala 1987 3
9 Guatemala 1992 3

We set the arguments to pivot_longer() as follows:

1. The first argument, cols, indicatesthe columns you either want to or don’t want to tidy.
Observe how we set this to -country indicating that we don’t want to tidy the country
variable in guat_dem which leaves 1952 through 1992 to be tidied.

2. names_to is the name of the column/variable in the new “tidy” frame that contains the
column names of the original data frame that you want to tidy. Observe how we set
names_to = "year" and in the resulting guat_dem_tidy the column year contains the
years where the Guatemala’s democracy score were measured.

3. values_to is the name of the column/variable in the “tidy” frame that contains the
rows and columns of values in the original data frame you want to tidy. Observe how we
set values_to = "democracy_score" and in the resulting guat_dem_tidy the column
democracy_score contains the 1 × 9 = 9 democracy scores.

However, observe in the output for guat_dem_tidy that the year variable is of type chr
or character. Before we can plot this variable on the x-axis, we need to convert it into a
numerical variable using the as.numeric() function within the mutate() function, which we
saw in Section 3.5 on mutating existing variables to create new ones.

148



guat_dem_tidy <- guat_dem_tidy %>%
mutate(year = as.numeric(year))

We can now create the plot to show how the democracy score of Guatemala changed from
1952 to 1992 using a geom_line():

ggplot(guat_dem_tidy, aes(x = year, y = democracy_score)) +
geom_line() +
labs(

x = "Year",
y = "Democracy Score",
title = "Democracy score in Guatemala 1952-1992"

)

−7.5

−5.0

−2.5

0.0

2.5

1950 1960 1970 1980 1990
Year

D
em

oc
ra

cy
 S

co
re

Democracy score in Guatemala 1952−1992

� Learning Check 4.4

Convert the dem_score data frame into a tidy data frame and assign the name of
dem_score_tidy to the resulting long-formatted data frame.

149



� Learning Check 4.5

Read in the life expectancy data stored at https://moderndive.com/data/le_mess.csv
and convert it to a tidy data frame.

4.4 Conclusion

4.4.1 tidyverse package

Notice at the beginning of the chapter we loaded the following four packages, which are among
the four of the most frequently used R packages for data science:

library(dplyr)
library(ggplot2)
library(readr)
library(tidyr)

There is a much quicker way to load these packages than by individually loading them as we
did above: by installing and loading the tidyverse package. The tidyverse package acts as
an “umbrella” package whereby installing/loading it will install/load multiple packages at once
for you. So after installing the tidyverse package as you would a normal package, running
this:

library(tidyverse)

would be the same as running this:

library(ggplot2)
library(dplyr)
library(tidyr)
library(readr)
library(purrr)
library(tibble)
library(stringr)
library(forcats)

You’ve seen the first 4 of the these packages: ggplot2 for data visualization, dplyr for data
wrangling, tidyr for converting data to “tidy” format, and readr for importing spreadsheet
data into R. The remaining packages (purrr, tibble, stringr, and forcats) are left for a
more advanced book; check out R for Data Science to learn about these packages.

150

https://moderndive.com/data/le_mess.csv
http://r4ds.had.co.nz/


The tidyverse “umbrella” package gets its name from the fact that all functions in all its
constituent packages are designed to that all inputs/argument data frames are in “tidy” format
and all output data frames are in “tidy” format as well. This standardization of input and
output data frames makes transitions between the various functions in these packages as
seamless as possible.

4.4.2 Additional resources

If you want to learn more about using the readr and tidyr package, we suggest you that you
check out RStudio’s “Data Import” cheatsheet. You can access this cheatsheet by going to
RStudio’s cheatsheet page and searching for “Data Import Cheat Sheet”.

Figure 4.3: Data Import cheatsheat

151

https://www.rstudio.com/resources/cheatsheets/


4.4.3 What’s to come?

Congratulations! We’ve completed the “Data Science via the tidyverse” portion of this book!
We’ll now move to the “data modeling” portion in Chapters -Chapter 5 and -Chapter 6, where
you’ll leverage your data visualization and wrangling skills to model relationships between
different variables in data frames.

152



Part III

Data Modeling

153



5 Basic Regression

Now that we are equipped with data visualization skills from Chapter 2, an understanding of
the “tidy” data format from Chapter 4, and data wrangling skills from Chapter 3, we now
proceed with data modeling. The fundamental premise of data modeling is to make explicit
the relationship between:

• an outcome variable 𝑦, also called a dependent variable and
• an explanatory/predictor variable 𝑥, also called an independent variable or covariate.

Another way to state this is using mathematical terminology: we will model the outcome
variable 𝑦 as a function of the explanatory/predictor variable 𝑥. Why do we have two different
labels, explanatory and predictor, for the variable 𝑥? That’s because roughly speaking data
modeling can be used for two purposes:

1. Modeling for prediction: You want to predict an outcome variable 𝑦 based on the
information contained in a set of predictor variables. You don’t care so much about
understanding how all the variables relate and interact, but so long as you can make
good predictions about 𝑦, you’re fine. For example, if we know many individuals’ risk
factors for lung cancer, such as smoking habits and age, can we predict whether or not
they will develop lung cancer? Here we wouldn’t care so much about distinguishing the
degree to which the different risk factors contribute to lung cancer, but instead only on
whether or not they could be put together to make reliable predictions.

2. Modeling for explanation: You want to explicitly describe the relationship between
an outcome variable 𝑦 and a set of explanatory variables, determine the significance of
any found relationships, and have measures summarizing these. Continuing our example
from above, we would now be interested in describing the individual effects of the different
risk factors and quantifying the magnitude of these effects. One reason could be to design
an intervention to reduce lung cancer cases in a population, such as targeting smokers
of a specific age group with an advertisement for smoking cessation programs. In this
book, we’ll focus more on this latter purpose.

Data modeling is used in a wide variety of fields, including statistical inference, causal inference,
artificial intelligence, and machine learning. There are many techniques for data modeling,
such as tree-based models, neural networks and deep learning, and supervised learning. In this
chapter, we’ll focus on one particular technique: linear regression, one of the most commonly-
used and easy-to-understand approaches to modeling. Recall our discussion in Subsection 1.4.3
on numerical and categorical variables. Linear regression involves:

154



• an outcome variable 𝑦 that is numerical and
• explanatory variables 𝑥𝑖 (e.g. 𝑥1, 𝑥2, ...) that are either numerical or categorical.

With linear regression there is always only one numerical outcome variable 𝑦 but we have
choices on both the number and the type of explanatory variables to use. We’re going to cover
the following regression scenarios:

• In this current chapter on basic regression, we’ll always have only one explanatory vari-
able.

– In Section 5.1, this explanatory variable will be a single numerical explanatory
variable 𝑥. This scenario is known as simple linear regression.

– In Section 5.2, this explanatory variable will be a categorical explanatory variable
𝑥.

• In the next chapter, Chapter 6 on multiple regression, we’ll have more than one explana-
tory variable:

– We’ll focus on two numerical explanatory variables, 𝑥1 and 𝑥2, in Section 6.1.
– We’ll use one numerical and one categorical explanatory variable in Section 6.1.

We’ll also introduce interaction models here; there, the effect of one explanatory
variable depends on the value of another.

We’ll study all four of these regression scenarios using real data, all easily accessible via R
packages!

Packages Needed

Let’s now load all the packages needed for this chapter (this assumes you’ve already installed
them). In this chapter we introduce some new packages:

1. The tidyverse “umbrella” package. Recall from our discussion in Subsection 4.4.1 that
loading the tidyverse package by running library(tidyverse) loads the following
commonly used data science packages all at once:

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to “tidy” format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

2. The skimr (Waring et al. 2022) package, which provides a simple-to-use function to
quickly compute a wide array of commonly-used summary statistics.

3. The gapminder package, which provides excerpts of data available from Gapminder.org

155

https://gapminder.org


4. The moderndive package, which includes data sets we will analyze

If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(skimr)
library(gapminder)
library(moderndive)

5.1 One numerical explanatory variable

Why do some professors and instructors at universities and colleges get high teaching evalua-
tions from students while others don’t? What factors can explain these differences? Are there
biases? These are questions that are of interest to university/college administrators, as teach-
ing evaluations are among the many criteria considered in determining which professors and
instructors should get promotions. Researchers at the University of Texas in Austin, Texas
(UT Austin) tried to answer this question: what factors can explain differences in instructor’s
teaching evaluation scores? To this end, they collected information on 𝑛 = 463 instructors. A
full description of the study can be found at openintro.org.

We’ll keep things simple for now and try to explain differences in instructor evaluation scores
as a function of one numerical variable: their “beauty score.” The specifics on how this score
was calculated will be described shortly.

Could it be that instructors with higher beauty scores also have higher teaching evaluations?
Could it be instead that instructors with higher beauty scores tend to have lower teaching
evaluations? Or could it be there is no relationship between beauty score and teaching evalu-
ations?

We’ll achieve ways to address these questions by modeling the relationship between these two
variables with a particular kind of linear regression called simple linear regression. Simple
linear regression is the most basic form of linear regression. With it we have

1. A numerical outcome variable 𝑦. In this case, an instructor’s teaching score.

2. A single numerical explanatory variable 𝑥. In this case, an instructor’s beauty score.

5.1.1 Exploratory data analysis

A crucial step before doing any kind of modeling or analysis is performing an exploratory
data analysis, or EDA, of all our data. Exploratory data analysis can give you a sense of
the distribution of the data and whether there are outliers and/or missing values. Most

156

https://www.openintro.org/stat/data/?data=evals


importantly, it can inform how to build your model. There are many approaches to exploratory
data analysis; here are three:

1. Most fundamentally: just looking at the raw values, in a spreadsheet for example. While
this may seem trivial, many people ignore this crucial step!

2. Computing summary statistics like means, medians, and standard deviations.

3. Creating data visualizations.

Let’s load the evals data (which is built into the moderndive package), select only a subset
of the variables, and look at the raw values. Recall you can look at the raw values by running
View() in the console in RStudio to pop-up the spreadsheet viewer with the data frame of
interest as the argument to View(). Here, however, we present only a snapshot of five randomly
chosen rows:

evals_ch5 <- evals %>%
select(score, bty_avg, age)

evals_ch5 %>%
slice_sample(n = 5)

Table 5.1: Random sample of 5 instructors

score bty_avg age
3.7 3.00 62
4.7 4.33 46
4.8 5.50 62
2.8 2.00 62
4.0 2.33 64

While a full description of each of these variables can be found at openintro.org, let’s summarize
what each of these variables represents.

1. score: Numerical variable of the average teaching score based on students’ evaluations
between 1 and 5. This is the outcome variable 𝑦 of interest.

2. bty_avg: Numerical variable of average “beauty” rating based on a panel of 6 students’
scores between 1 and 10. This is the numerical explanatory variable 𝑥 of interest. Here
1 corresponds to a low beauty rating and 10 to a high beauty rating.

3. age: A numerical variable of age in years as an integer value.

157

https://www.openintro.org/stat/data/?data=evals


An alternative way to look at the raw data values is by choosing a random sample of the rows
in evals_ch5 by piping it into the slice_sample() function from the dplyr package. Here
we set the n argument to be 5, indicating that we want a random sample of 5 rows. We display
the results in Table 5.2. Note that due to the random nature of the sampling, you will likely
end up with a different subset of 5 rows.

evals_ch5 %>%
slice_sample(n = 5)

Table 5.2: A random sample of 5 out of the 463 courses at UT Austin

Table 5.2: A random sample of 5 out of the 463 courses at UT Austin

score bty_avg age
4.4 5.67 57
3.1 7.00 33
4.1 4.17 45
5.0 4.33 46
4.8 4.83 52

Now that we’ve looked at the raw values in our evals_ch5 data frame and got a preliminary
sense of the data, let’s move on to the next common step in an exploratory data analysis:
computing summary statistics. Let’s start by computing the mean and median of our numerical
outcome variable score and our numerical explanatory variable “beauty” score denoted as
bty_avg. We’ll do this by using the summarize() function from dplyr along with the mean()
and median() summary functions we saw in Section 3.3.

evals_ch5 %>%
summarize(

mean_bty_avg = mean(bty_avg),
mean_score = mean(score),
median_bty_avg = median(bty_avg),
median_score = median(score)
)

# A tibble: 1 x 4
mean_bty_avg mean_score median_bty_avg median_score

<dbl> <dbl> <dbl> <dbl>
1 4.42 4.17 4.33 4.3

158



However, what if we want other summary statistics as well, such as the standard deviation
(a measure of spread), the minimum and maximum values, and various percentiles? Typing
out all these summary statistic functions in summarize() would be long and tedious. Instead,
let’s use the convenient skim() function from the skimr package. This function takes in
a data frame, “skims” it, and returns commonly used summary statistics. Let’s take our
evals_ch5 data frame, select() only the outcome and explanatory variables teaching score
and bty_avg, and pipe them into the skim() function:

evals_ch5 %>%
select(score, bty_avg) %>%
skim()

�� Data Summary ������������������������
Values

Name Piped data
Number of rows 463
Number of columns 2
_______________________
Column type frequency:
numeric 2

________________________
Group variables None

�� Variable type: numeric ������������������������������������������������������
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist

1 score 0 1 4.17 0.544 2.3 3.8 4.3 4.6 5 �����
2 bty_avg 0 1 4.42 1.53 1.67 3.17 4.33 5.5 8.17 �����

For our two numerical variables teaching score and “beauty” score bty_avg it returns:

• n_missing: the number of missing values
• complete_rate: the proportion of non-missing or complete values
• mean: the average
• sd: the standard deviation
• p0: the 0th percentile: the value at which 0% of observations are smaller than it (the

minimum value)
• p25: the 25th percentile: the value at which 25% of observations are smaller than it (the

1st quartile)
• p50: the 50th percentile: the value at which 50% of observations are smaller than it (the

2nd quartile and more commonly called the median)
• p75: the 75th percentile: the value at which 75% of observations are smaller than it (the

3rd quartile)

159



• p100: the 100th percentile: the value at which 100% of observations are smaller than it
(the maximum value)

Looking at this output, we get an idea of how the values of both variables distribute. For
example, the mean teaching score was 4.17 out of 5 whereas the mean “beauty” score was 4.42
out of 10. Furthermore, the middle 50% of teaching scores were between 3.80 and 4.6 (the
first and third quartiles) whereas the middle 50% of “beauty” scores were between 3.17 and
5.5 out of 10.

The skim() function only returns what are known as univariate summary statistics: functions
that take a single variable and return some numerical summary of that variable. However,
there also exist bivariate summary statistics: functions that take in two variables and return
some summary of those two variables. In particular, when the two variables are numerical,
we can compute the correlation coefficient. Generally speaking, coefficients are quantitative
expressions of a specific phenomenon. A correlation coefficient is a quantitative expression
of the strength of the linear relationship between two numerical variables. Its value ranges
between -1 and 1 where:

• -1 indicates a perfect negative relationship: As the value of one variable goes up, the
value of the other variable tends to go down following along a straight line.

• 0 indicates no relationship: The values of both variables go up/down independently of
each other.

• +1 indicates a perfect positive relationship: As the value of one variable goes up, the
value of the other variable tends to go up as well in a linear fashion.

Figure 5.1 gives examples of different correlation coefficient values for hypothetical numerical
variables 𝑥 and 𝑦. We see that while for a correlation coefficient of -0.75 there is still a negative
relationship between 𝑥 and 𝑦, it is not as strong as the negative relationship between 𝑥 and 𝑦
when the correlation coefficient is -1.

The correlation coefficient is computed using the cor() function, where the inputs to the
function are the two numerical variables for which we want to quantify the strength of the
linear relationship.

evals_ch5 %>%
summarise(correlation = cor(score, bty_avg))

# A tibble: 1 x 1
correlation

<dbl>
1 0.187

160



0.75 1

−1 −0.75 0

x

y

Figure 5.1: Different correlation coefficients

161



You can also use the cor() function directly instead of using it inside summarise, but you
will need to use the $ syntax to access the specific variables within a data frame (See Subsec-
tion 1.4.3):

cor(x = evals_ch5$bty_avg, y = evals_ch5$score)

[1] 0.187

In our case, the correlation coefficient of 0.187 indicates that the relationship between teach-
ing evaluation score and beauty average is “weakly positive.” There is a certain amount of
subjectivity in interpreting correlation coefficients, especially those that aren’t close to -1, 0,
and 1. For help developing such intuition and more discussion on the correlation coefficient
see [Subsection -Section 5.3.1 below.

Let’s now proceed by visualizing this data. Since both the score and bty_avg variables are
numerical, a scatterplot is an appropriate graph to visualize this data. Let’s do this using
geom_point() and set informative axes labels and title and display the result in Figure 5.2.

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_point() +
labs(x = "Beauty Score", y = "Teaching Score",

title = "Relationship of teaching and beauty scores")

162



3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Relationship of teaching and beauty scores

Figure 5.2: Instructor evaluation scores at UT Austin

Observe the following:

1. Most “beauty” scores lie between 2 and 8.

2. Most teaching scores lie between 3 and 5.

3. Recall our earlier computation of the correlation coefficient, which describes the strength
of the linear relationship between two numerical variables. Looking at Figure 5.3, it is
not immediately apparent that these two variables are positively related. This is to be
expected given the positive, but rather weak (close to 0), correlation coefficient of 0.187.

Before we continue, we bring to light an important fact about this dataset: it suffers from
overplotting. Recall from the data visualization Subsection 2.3.2 that overplotting occurs
when several points are stacked directly on top of each other thereby obscuring the number
of points. For example, let’s focus on the 6 points in the top-right of the plot with a beauty
score of around 8 out of 10: are there truly only 6 points, or are there many more just stacked
on top of each other? You can think of these as ties. Let’s break up these ties with a little
random “jitter” added to the points in Figure 5.3.

163



3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Relationship of teaching and beauty scores

Figure 5.3: Instructor evaluation scores at UT Austin: Jittered

164



Jittering adds a little random bump to each of the points to break up these ties: just enough
so you can distinguish them, but not so much that the plot is overly altered. Furthermore,
jittering is strictly a visualization tool; it does not alter the original values in the dataset.

Let’s compare side-by-side the regular scatterplot in Figure 5.2 with the jittered scatterplot
Figure 5.3.

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Regular scatterplot

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Jittered scatterplot

Figure 5.4: Comparing regular and jittered scatterplots

We make several further observations:

1. Focusing our attention on the top-right of the plot again, as noted earlier where there
seemed to only be 6 points in the regular scatterplot, we see there were in fact really 9
as seen in the jittered scatterplot.

2. A further interesting trend is that the jittering revealed a large number of instructors
with beauty scores of between 3 and 4.5, towards the lower end of the beauty scale.

To keep things simple in this chapter, we’ll present regular scatterplots rather than the jittered
scatterplots, though we’ll keep the overplotting in mind whenever looking at such plots. Going
back to scatterplot in Figure 5.2, let’s improve on it by adding a “regression line” in Figure 5.5.
This is easily done by adding a new layer to the ggplot code that created Figure 5.3: +

165



geom_smooth(method = "lm"). A regression line is a “best fitting” line in that of all possible
lines you could draw on this plot, it is “best” in terms of some mathematical criteria. We
discuss the criteria for “best” in Subsection 5.3.3 below, but we suggest you read this only
after covering the concept of a residual coming up in Subsection 5.1.3.

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_point() +
labs(

x = "Beauty Score",
y = "Teaching Score",
title = "Relationship of teaching and beauty scores"
) +

geom_smooth(method = "lm")

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Relationship of teaching and beauty scores

Figure 5.5: Regression line

When viewed on this plot, the regression line is a visual summary of the relationship between
two numerical variables, in our case the outcome variable score and the explanatory variable
bty_avg. The positive slope of the blue line is consistent with our observed correlation co-
efficient of 0.187 suggesting that there is a positive relationship between score and bty_avg.

166



We’ll see later however that while the correlation coefficient is not equal to the slope of this
line, they always have the same sign: positive or negative.

What are the grey bands surrounding the blue line? These are standard error bands, which can
be thought of as error/uncertainty bands. Let’s skip this idea for now and suppress these grey
bars by adding the argument se = FALSE to geom_smooth(method = "lm"). We’ll introduce
standard errors when covering sampling distributions (Chapter 9). We also will use standard
errors to construct confidence intervals (Chapter 10) and conduct hypothesis tests (Chapter 12).
Standard errors are really important!

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_point() +
labs(

x = "Beauty Score",
y = "Teaching Score",
title = "Relationship of teaching and beauty scores"
) +

geom_smooth(method = "lm", se = FALSE)

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Relationship of teaching and beauty scores

Figure 5.6: Regression line without error bands

167



� Learning Check 5.1

Conduct a new exploratory data analysis with the same outcome variable 𝑦 being score
but with age as the new explanatory variable 𝑥. Remember, this involves three things:

a) Looking at the raw values.
b) Computing summary statistics of the variables of interest.
c) Creating informative visualizations.

What can you say about the relationship between age and teaching scores based on this
exploration?

5.1.2 Simple linear regression

You may recall from secondary school / high school algebra, in general, the equation of a line is
𝑦 = 𝑎 + 𝑏𝑥, which is defined by two coefficients. Recall we defined this earlier as “quantitative
expressions of a specific property of a phenomenon.” These two coefficients are:

• the intercept coefficient 𝑎, or the value of 𝑦 when 𝑥 = 0, and
• the slope coefficient 𝑏, or the increase in 𝑦 for every increase of one in 𝑥.

However, when defining a line specifically for regression, like the blue regression line in Fig-
ure 5.6, we use slightly different notation: the equation of the regression line is ̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥
where

• the intercept coefficient is 𝑏0, or the value of ̂𝑦 when 𝑥 = 0, and
• the slope coefficient 𝑏1, or the increase in ̂𝑦 for every increase of one in 𝑥.

Why do we put a “hat” on top of the 𝑦? It’s a form of notation commonly used in regression,
which we’ll introduce in the next Subsection 5.1.3 when we discuss fitted values. For now, let’s
ignore the hat and treat the equation of the line as you would from secondary school / high
school algebra recognizing the slope and the intercept. We know looking at Figure 5.6 that
the slope coefficient corresponding to bty_avg should be positive. Why? Because as bty_avg
increases, professors tend to roughly have higher teaching evaluation scores. However, what
are the specific values of the intercept and slope coefficients? Let’s not worry about computing
these by hand, but instead let the computer do the work for us. Specifically, let’s use R!

Let’s get the value of the intercept and slope coefficients by outputting something called the
linear regression table. We will fit the linear regression model to the data using the lm()
function and save this to score_model. lm stands for “linear model.” When we say “fit”, we
are saying find the best fitting line to this data.

The lm() function that “fits” the linear regression model is typically used as lm(y ~ x, data
= data_frame_name) where:

168



• y is the outcome variable, followed by a tilde (~). This is likely the key to the left of “1”
on your keyboard. In our case, y is set to score.

• x is the explanatory variable. In our case, x is set to bty_avg. We call the combination
y ~ x a model formula.

• data_frame_name is the name of the data frame that contains the variables y and x. In
our case, data_frame_name is the evals_ch5 data frame.

score_model <- lm(score ~ bty_avg, data = evals_ch5)
score_model

Call:
lm(formula = score ~ bty_avg, data = evals_ch5)

Coefficients:
(Intercept) bty_avg

3.8803 0.0666

This output is telling us that the Intercept coefficient 𝑏0 of the regression line is 3.8803, and
the slope coefficient for by_avg is 0.0666. Therefore the blue regression line in Figure 5.6 is

ŝcore = 𝑏0 + 𝑏bty avg ⋅ bty avg = 3.8803 + 0.0666 ⋅ bty avg

where

• The intercept coefficient 𝑏0 = 3.8803 means for instructors that had a hypothetical beauty
score of 0, we would expect them to have on average a teaching score of 3.8803. In this
case however, while the intercept has a mathematical interpretation when defining the
regression line, there is no practical interpretation since score is an average of a panel
of 6 students’ ratings from 1 to 10, a bty_avg of 0 would be impossible. Furthermore,
no instructors had a beauty score anywhere near 0 in this data.

• Of more interest is the slope coefficient associated with bty_avg: 𝑏bty avg = +0.0666.
This is a numerical quantity that summarizes the relationship between the outcome and
explanatory variables. Note that the sign is positive, suggesting a positive relationship
between beauty scores and teaching scores, meaning as beauty scores go up, so also do
teaching scores go up. The slope’s precise interpretation is:

For every increase of 1 unit in bty_avg, there is an associated increase of, on
average, 0.0666 units of score.

169



Important

Such interpretations need be carefully worded:

• We only stated that there is an associated increase, and not necessarily a causal
increase. For example, perhaps it’s not that beauty directly affects teaching scores,
but instead younger instructors tend to be perceived as better teachers (perhaps
because they are more energetic or use more modern techniques), and younger
instructors are also perceived to be more beautiful. Avoiding such reasoning can be
summarized by the adage “correlation is not necessarily causation.” In other words,
just because two variables are correlated, it doesn’t mean one directly causes the
other. We discuss these ideas more in Subsection 5.3.2 and in Chapter 7.

• We say that this associated increase is on average 0.0666 units of teaching score
and not that the associated increase is exactly 0.0666 units of score across all values
of bty_avg. This is because the slope is the average increase across all points as
shown by the regression line in Figure 5.6.

Now that we’ve learned how to compute the equation for the blue regression line in Figure 5.6
and interpreted all its terms, let’s take our modeling one step further. This time after fitting
the model using the lm(), let’s get something called the regression table using the summary()
function:

# Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)

# Get regression results:
summary(score_model)

Call:
lm(formula = score ~ bty_avg, data = evals_ch5)

Residuals:
Min 1Q Median 3Q Max

-1.925 -0.369 0.142 0.398 0.931

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.8803 0.0761 50.96 < 0.0000000000000002 ***
bty_avg 0.0666 0.0163 4.09 0.000051 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

170



Residual standard error: 0.535 on 461 degrees of freedom
Multiple R-squared: 0.035, Adjusted R-squared: 0.0329
F-statistic: 16.7 on 1 and 461 DF, p-value: 0.0000508

Note how we took the output of the model fit saved in score_model and used it as an input to
the subsequent summary() function. The raw output of the summary() function above gives
lots of information about the regression model that we won’t cover in this introductory course
(e.g., Multiple R-squared, F-statistic, etc.). We will only consider the “Coefficients” section
of the output. We can print these relevant results only by accessing the coefficients object
stored in the summary results.

summary(score_model)$coefficients

Table 5.3: Linear regression table

Table 5.3: Linear regression table

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.880 0.076 50.96 0
bty_avg 0.067 0.016 4.09 0

For now since we are only using regression as an exploratory data analysis tool, we will only
focus on the “Estimate” column that contains the estimates of the intercept and slope for the
best fit line for our data. The remaining three columns refer to statistical concepts known as
standard errors, t-statistics, and p-values, which we will cover in Parts III and IV of the book
when we talk about statistical theory and inference.

� Learning Check 5.2

Fit a new simple linear regression using lm(score ~ age, data = evals_ch5) where
age is the new explanatory variable 𝑥. Get information about the “best-fitting” line from
the regression table by applying the summary() function. How do the regression results
match up with the results from your exploratory data analysis above?

5.1.3 Observed/fitted values and residuals

We just saw how to get the value of the intercept and the slope of the regression line from the
regression table generated by summary(). Now instead, say we want information on individual

171



points. In this case, we focus on one of the 𝑛 = 463 instructors in this dataset, corresponding
to a single row of evals_ch5.

For example, say we are interested in the 21st instructor in this dataset:

Table 5.4: Data for 21st instructor

score bty_avg age
4.9 7.33 31

What is the value on the blue line corresponding to this instructor’s bty_avg of 7.333? In
Figure 5.7 we mark three values in particular corresponding to this instructor.

• Red circle: This is the observed value 𝑦 = 4.9 and corresponds to this instructor’s actual
teaching score.

• Red square: This is the fitted value ̂𝑦 and corresponds to the value on the regression line
for 𝑥 = 7.333. This value is computed using the intercept and slope in the regression
table above:

̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥 = 3.88 + 0.067 ∗ 7.333 = 4.369

• Blue arrow: The length of this arrow is the residual and is computed by subtracting the
fitted value ̂𝑦 from the observed value 𝑦. The residual can be thought of as the error
or “lack of fit” of the regression line. In the case of this instructor, it is 𝑦 − ̂𝑦 = 4.9 -
4.369 = 0.531. In other words, the model was off by 0.531 teaching score units for this
instructor.

What if we want both

1. the fitted value ̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥 and
2. the residual 𝑦 − ̂𝑦

for not only the 21st instructor but for all 463 instructors in the study? Recall that each
instructor corresponds to one of the 463 rows in the evals_ch5 data frame and also one of
the 463 points in the regression plot in Figure 5.6.

We could repeat the above calculations by hand 463 times, but that would be tedious and
time consuming. Instead, let’s use our data wrangling tools from Chapter 3 and the functions
fitted() and residuals() to create a data frame with these values. Similar to the summary()
function, the fitted() and residuals() functions also take a model object as their input.
fitted() calculates all the fitted ̂𝑦 values by plugging in each observed 𝑥 value in the dataset
into the regression equation, and residuals() similarly calculates all the residuals (𝑦 − ̂𝑦) for
each observation in the dataset. The following code will store these new ̂𝑦 and residual variables,
which we will name score_hat and residual respectively, along with their corresponding
score and bty_avg values from the original data evals_ch5.

172



3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Relationship of teaching and beauty scores

Figure 5.7: Example of observed value, fitted value, and residual

173



score_model_data <- evals_ch5 %>%
select(score, bty_avg) %>%
mutate(

score_hat = fitted(score_model),
residual = residuals(score_model)
) %>%

rownames_to_column("ID")

Note that we also used the rownames_to_column() function from the tibble package (part
of the tidyverse suite) to create a convenient ID column from the rownames. In the table
below we only present the results for the 21st through the 24th instructors.

Table 5.5: Regression points (for only 21st through 24th instructor)

Table 5.5: Regression points (for only 21st through 24th instructor)

ID score bty_avg score_hat residual
21 4.9 7.33 4.37 0.531
22 4.6 7.33 4.37 0.231
23 4.5 7.33 4.37 0.131
24 4.4 5.50 4.25 0.153

Let’s recap what we’re seeing in Table 5.5 in terms of the linear regression model (score_model)
that we fit to the evals_ch5 data:

• The ID column represents the row number where this observation appears in the original
evals_ch5 data

• The score column represents the observed value of the outcome variable 𝑦.
• The bty_avg column represents the values of the explanatory variable 𝑥.
• The score_hat column represents the fitted values ̂𝑦.
• The residual column represents the residuals 𝑦 − ̂𝑦.

Just as we did for the 21st instructor in the evals_ch5 dataset (in the first row of the table
above), let’s repeat the above calculations for the 24th instructor in the evals_ch5 dataset
(in the fourth row of the table above):

• score = 4.4 is the observed value 𝑦 for this instructor.

• bty_avg = 5.50 is the value of the explanatory variable 𝑥 for this instructor.

174



• score_hat = 4.25 = 3.88 + 0.067 * 𝑥 = 3.88 + 0.067 * 5.50 is the fitted value ̂𝑦 for this
instructor.

• residual = 0.153 = 4.4 - 4.25 is the value of the residual for this instructor. In other
words, the model was off by 0.153 teaching score units for this instructor.

More development of this idea appears in Subsection 5.3.3 and we encourage you to read that
section after you investigate residuals.

5.2 One categorical explanatory variable

It’s an unfortunate truth that life expectancy is not the same across various countries in
the world; there are a multitude of factors that are associated with how long people live.
International development agencies are very interested in studying these differences in the
hope of understanding where governments should allocate resources to address this problem.
In this section, we’ll explore differences in life expectancy in two ways:

1. Differences between continents: Are there significant differences in life expectancy, on
average, between the five continents of the world: Africa, the Americas, Asia, Europe,
and Oceania?

2. Differences within continents: How does life expectancy vary within the world’s five
continents? For example, is the spread of life expectancy among the countries of Africa
larger than the spread of life expectancy among the countries of Asia?

To answer such questions, we’ll study the gapminder dataset from the gapminder package.
Recall we mentioned this dataset in Subsection 2.1.2 when we first introduced the “Grammar
of Graphics” (Chapter 2). This dataset has international development statistics such as life
expectancy, GDP per capita, and population by country (𝑛 = 142) for 5-year intervals between
1952 and 2007.

We’ll use this data for linear regression again, but note that our explanatory variable 𝑥 is now
categorical, and not numerical like when we covered simple linear regression in Section 5.1.
More precisely, we have:

1. A numerical outcome variable 𝑦. In this case, life expectancy.

2. A single categorical explanatory variable 𝑥. In this case, the continent the country is
part of.

When the explanatory variable 𝑥 is categorical, the concept of a “best-fitting” line is a little
different than the one we saw previously in Section 5.1 where the explanatory variable 𝑥 was
numerical. We’ll study these differences shortly in [Subsection -Section 5.2.2, but first we
conduct our exploratory data analysis.

175



5.2.1 Exploratory data analysis

The data on the 142 countries can be found in the gapminder data frame included in the
gapminder package. However, to keep things simple, let’s filter() for only those observa-
tions/rows corresponding to the year 2007. Additionally, let’s select() only the subset of
the variables we’ll consider in this chapter. We’ll save this data in a new data frame called
gapminder2007:

library(gapminder)

gapminder2007 <- gapminder %>%
filter(year == 2007) %>%
select(country, lifeExp, continent, gdpPercap)

Recall from Section 5.1.1 that there are three common steps in an exploratory data analysis:

1. Most crucially: Looking at the raw data values.

2. Computing summary statistics, like means, medians, and interquartile ranges.

3. Creating data visualizations.

Let’s perform the first common step in an exploratory data analysis: looking at the raw data
values. You can do this by using RStudio’s spreadsheet viewer or by using the glimpse()
command as introduced in Section 1.4.3 on exploring data frames:

glimpse(gapminder2007)

Rows: 142
Columns: 4
$ country <fct> "Afghanistan", "Albania", "Algeria", "Angola", "Argentina", ~
$ lifeExp <dbl> 43.8, 76.4, 72.3, 42.7, 75.3, 81.2, 79.8, 75.6, 64.1, 79.4, ~
$ continent <fct> Asia, Europe, Africa, Africa, Americas, Oceania, Europe, Asi~
$ gdpPercap <dbl> 975, 5937, 6223, 4797, 12779, 34435, 36126, 29796, 1391, 336~

Observe that Observations: 142 indicates that there are 142 rows/observations in
gapminder2007, where each row corresponds to one country. In other words, the observa-
tional unit is an individual country. Furthermore, observe that the variable continent is of
type <fct>, which stands for factor, which is R’s way of encoding categorical variables.

A full description of all the variables included in gapminder can be found by reading the asso-
ciated help file (run ?gapminder in the console). However, let’s fully describe the 4 variables
we selected in gapminder2007:

176



1. country: An identification text variable used to distinguish the 142 countries in the
dataset.

2. lifeExp: A numerical variable of that country’s life expectancy at birth. This is the
outcome variable 𝑦 of interest.

3. continent: A categorical variable with five levels. Here “levels” corresponds to the pos-
sible categories: Africa, Asia, Americas, Europe, and Oceania. This is the explanatory
variable 𝑥 of interest.

4. gdpPercap: A numerical variable of that country’s GDP per capita in US inflation-
adjusted dollars that we’ll use as another outcome variable 𝑦 in the Learning Check at
the end of this subsection.

Furthermore, let’s look at a random sample of five out of the 142 countries in Table 5.6. Again,
note due to the random nature of the sampling, you will likely end up with a different subset
of 5 rows.

gapminder2007 %>%
slice_sample(n = 5)

Table 5.6: Random sample of 5 out of 142 countries

Table 5.6: Random sample of 5 out of 142 countries

country lifeExp continent gdpPercap
Togo 58.4 Africa 883
Sao Tome and Principe 65.5 Africa 1598
Congo, Dem. Rep. 46.5 Africa 278
Lesotho 42.6 Africa 1569
Bulgaria 73.0 Europe 10681

Now that we’ve looked at the raw values in our gapminder2007 data frame and got a sense of
the data, let’s move on to computing summary statistics. Let’s once again apply the skim()
function from the skimr package. Recall from our previous EDA that this function takes
in a data frame, “skims” it, and returns commonly used summary statistics. Let’s take our
gapminder2007 data frame, select() only the outcome and explanatory variables lifeExp
and continent, and pipe them into the skim() function:

gapminder2007 %>%
select(lifeExp, continent) %>%
skim()

177



�� Data Summary ������������������������
Values

Name Piped data
Number of rows 142
Number of columns 2
_______________________
Column type frequency:
factor 1
numeric 1

________________________
Group variables None

�� Variable type: factor �������������������������������������������������������������������
skim_variable n_missing complete_rate ordered n_unique top_counts

1 continent 0 1 FALSE 5 Afr: 52, Asi: 33, Eur: 30, Ame: 25

�� Variable type: numeric ������������������������������������������������������������������
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist

1 lifeExp 0 1 67.0 12.1 39.6 57.2 71.9 76.4 82.6 �����

The skim() output now reports summaries for categorical variables (Variable type:factor)
separately from the numerical variables (Variable type:numeric). For the categorical vari-
able continent, it reports:

• n_missing and complete_rate, which are the number of missing and proportion of
non-missing values, respectively.

• n_unique: The number of unique levels to this variable, corresponding to Africa, Asia,
Americas, Europe, and Oceania. This refers to the how many countries are in the data
for each continent.

• top_counts: In this case the top four counts: Africa has 52 countries, Asia has 33,
Europe has 30, and Americas has 25. Not displayed is Oceania with 2 countries.

Turning our attention to the summary statistics of the numerical variable lifeExp, we observe
that the global median life expectancy in 2007 was 71.94. Thus, half of the world’s countries
(71 countries) had a life expectancy less than 71.94. The mean life expectancy of 67.01 is lower
however. Why is the mean life expectancy lower than the median?

We can answer this question by performing the last of the three common steps in an exploratory
data analysis: creating data visualizations. Let’s visualize the distribution of our outcome
variable 𝑦 = lifeExp in Figure 5.8.

178



ggplot(gapminder2007, aes(x = lifeExp)) +
geom_histogram(binwidth = 5, color = "white") +
labs(

x = "Life expectancy",
y = "Number of countries",
title = "Histogram of distribution of worldwide life expectancies"
)

0

10

20

30

40 50 60 70 80 90
Life expectancy

N
um

be
r 

of
 c

ou
nt

rie
s

Histogram of distribution of worldwide life expectancies

Figure 5.8: Histogram of Life Expectancy in 2007

We see that this data is left-skewed, also known as negatively skewed: there are a few countries
with low life expectancy that are bringing down the mean life expectancy. However, the median
is less sensitive to the effects of such outliers; hence, the median is greater than the mean in
this case.

Remember, however, that we want to compare life expectancies both between continents and
within continents. In other words, our visualizations need to incorporate some notion of the
variable continent. We can do this easily with a faceted histogram. Recall from Section 2.6
that facets allow us to split a visualization by the different values of another variable. We

179



display the resulting visualization in Figure 5.9 by adding a facet_wrap(~ continent, nrow
= 2) layer.

ggplot(gapminder2007, aes(x = lifeExp)) +
geom_histogram(binwidth = 5, color = "white") +
labs(

x = "Life expectancy",
y = "Number of countries",
title = "Histogram of distribution of worldwide life expectancies") +

facet_wrap(~ continent, nrow = 2)

Europe Oceania

Africa Americas Asia

40 50 60 70 80 90 40 50 60 70 80 90

40 50 60 70 80 90
0

5

10

15

0

5

10

15

Life expectancy

N
um

be
r 

of
 c

ou
nt

rie
s

Histogram of distribution of worldwide life expectancies

Figure 5.9: Life expectancy in 2007

Observe that unfortunately the distribution of African life expectancies is much lower than
the other continents, while in Europe life expectancies tend to be higher and furthermore do
not vary as much. On the other hand, both Asia and Africa have the most variation in life
expectancies. There is the least variation in Oceania, but keep in mind that there are only
two countries in Oceania: Australia and New Zealand.

Recall that an alternative method to visualize the distribution of a numerical variable split
by a categorical variable is by using a side-by-side boxplot. We map the categorical variable

180



continent to the 𝑥-axis and the different life expectancies within each continent on the 𝑦-axis
in Figure 5.10.

ggplot(gapminder2007, aes(x = continent, y = lifeExp)) +
geom_boxplot() +
labs(

x = "Continent",
y = "Life expectancy (years)",
title = "Life expectancy by continent"
)

40

50

60

70

80

Africa Americas Asia Europe Oceania
Continent

Li
fe

 e
xp

ec
ta

nc
y 

(y
ea

rs
)

Life expectancy by continent

Figure 5.10: Life expectancy in 2007

Some people prefer comparing the distributions of a numerical variable between different levels
of a categorical variable using a boxplot instead of a faceted histogram. This is because we
can make quick comparisons between the categorical variable’s levels with imaginary horizontal
lines. For example, observe in Figure 5.10 that we can quickly convince ourselves that Oceania
has the highest median life expectancies by drawing an imaginary horizontal line at 𝑦 = 80.
Furthermore, as we observed in the faceted histogram in Figure 5.9, Africa and Asia have the

181



largest variation in life expectancy as evidenced by their large interquartile ranges (the heights
of the boxes).

It’s important to remember however that the solid lines in the middle of the boxes correspond
to the medians (the middle value) rather than the mean (the average). So for example, if you
look at Asia, the solid line denotes the median life expectancy of around 72 years. This tells
us that half of all countries in Asia have a life expectancy below 72 years whereas half have a
life expectancy above 72 years.

Let’s compute the median and mean life expectancy for each continent with a little more data
wrangling and display the results in Table 5.7.

lifeExp_by_continent <- gapminder2007 %>%
group_by(continent) %>%
summarize(median = median(lifeExp), mean = mean(lifeExp))

Table 5.7: Life expectancy by continent

continent median mean
Africa 52.9 54.8
Americas 72.9 73.6
Asia 72.4 70.7
Europe 78.6 77.6
Oceania 80.7 80.7

Observe the order of the second column median life expectancy: Africa is lowest, the Amer-
icas and Asia are next with similar medians, then Europe, then Oceania. This ordering
corresponds to the ordering of the solid black lines inside the boxes in our side-by-side boxplot
in Figure 5.10.

Let’s now turn our attention to the values in the third column mean. Using Africa’s mean life
expectancy of 54.8 as a baseline for comparison, let’s start making relative comparisons to the
life expectancies of the other four continents:

1. The mean life expectancy of the Americas is 73.6 - 54.8 = 18.8 years higher.

2. The mean life expectancy of Asia is 70.7 - 54.8 = 15.9 years higher.

3. The mean life expectancy of Europe is 77.6 - 54.8 = 22.8 years higher.

4. The mean life expectancy of Oceania is 80.7 - 54.8 = 25.9 years higher.

Let’s put these values in Table 5.8, which we’ll revisit later on in this section.

182



Table 5.8: Mean life expectancy by continent and relative differences from mean for Africa

Table 5.8: Mean life expectancy by continent and relative differences from mean for Africa

continent mean Difference versus Africa
Africa 54.8 0.0
Americas 73.6 18.8
Asia 70.7 15.9
Europe 77.6 22.8
Oceania 80.7 25.9

� Learning Check 5.3

Conduct a new exploratory data analysis with the same explanatory variable 𝑥 being
continent but with gdpPercap as the new outcome variable 𝑦. Remember, this involves
three things:

1. Most crucially: Looking at the raw data values.
2. Computing summary statistics, such as means, medians, and interquartile ranges.
3. Creating data visualizations.

What can you say about the differences in GDP per capita between continents based on
this exploration?

5.2.2 Linear regression

In Subsection 5.1.2 we introduced simple linear regression, which involves modeling the re-
lationship between a numerical outcome variable 𝑦 as a function of a numerical explanatory
variable 𝑥, in our life expectancy example, we now have a categorical explanatory variable 𝑥
continent. While we still can fit a regression model, given our categorical explanatory vari-
able we no longer have a concept of a “best-fitting” line, but rather “differences relative to a
baseline for comparison.”

Before we fit our regression model, let’s create a table similar to Table 5.7, but

1. Report the mean life expectancy for each continent.

2. Report the difference in mean life expectancy relative to Africa’s mean life expectancy of
54.806 in the column “mean vs Africa”; this column is simply the “mean” column minus
54.806.

183



Think back to your observations from the eyeball test of Figure 5.10 at the end of the last
subsection. The column “mean vs Africa” is the same idea of comparing a summary statistic
to a baseline for comparison, in this case the countries of Africa, but using means instead of
medians.

Table 5.9: Mean life expectancy by continent

Table 5.9: Mean life expectancy by continent

continent mean mean vs Africa
Africa 54.8 0.0
Americas 73.6 18.8
Asia 70.7 15.9
Europe 77.6 22.8
Oceania 80.7 25.9

Now, let’s use the summary() function again to get the regression table for the gapminder2007
analysis:

lifeExp_model <- lm(lifeExp ~ continent, data = gapminder2007)

summary(lifeExp_model)$coefficients

Table 5.10: Linear regression table

Table 5.10: Linear regression table

Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.8 1.02 53.45 0
continentAmericas 18.8 1.80 10.45 0
continentAsia 15.9 1.65 9.68 0
continentEurope 22.8 1.70 13.47 0
continentOceania 25.9 5.33 4.86 0

Just as before, we’re only interested in the “Estimate” column, but unlike before, we now
have 5 rows corresponding to 5 outputs in our table: an intercept like before, but also
continentAmericas, continentAsia, continentEurope, and continentOceania. What are
these values? First, we must describe the equation for fitted value ̂𝑦, which is a little more
complicated when the 𝑥 explanatory variable is categorical:

184



̂life exp = 𝑏0 + 𝑏Amer ⋅ 𝟙Amer(𝑥) + 𝑏Asia ⋅ 𝟙Asia(𝑥) + 𝑏Euro ⋅ 𝟙Euro(𝑥) + 𝑏Ocean ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥) + 22.8 ⋅ 𝟙Euro(𝑥) + 25.9 ⋅ 𝟙Ocean(𝑥)

Let’s break this down. First, 𝟙𝐴(𝑥) is what’s known in mathematics as an “indicator function”
that takes one of two possible values:

𝟙𝐴(𝑥) = { 1 if 𝑥 is in 𝐴
0 otherwise

In a statistical modeling context this is also known as a “dummy variable”. In our case, let’s
consider the first such indicator variable:

𝟙Amer(𝑥) = { 1 if country 𝑥 is in the Americas
0 otherwise

Now let’s interpret the terms in the estimate column of the regression table. First 𝑏0 =
intercept = 54.8 corresponds to the mean life expectancy for countries in Africa, since for
country 𝑥 in Africa we have the following equation:

̂life exp = 𝑏0 + 𝑏Amer ⋅ 𝟙Amer(𝑥) + 𝑏Asia ⋅ 𝟙Asia(𝑥) + 𝑏Euro ⋅ 𝟙Euro(𝑥) + 𝑏Ocean ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥) + 22.8 ⋅ 𝟙Euro(𝑥) + 25.9 ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 0 + 15.9 ⋅ 0 + 22.8 ⋅ 0 + 25.9 ⋅ 0
= 54.8

Meaning, all four of the indicator variables are equal to 0. Recall we stated earlier that we
would treat Africa as the baseline for comparison group. Furthermore, this value corresponds
to the group mean life expectancy for all African countries in Table 5.8.

Next, 𝑏Amer = continentAmericas = 18.8 is the difference in mean life expectancy of coun-
tries in the Americas relative to Africa, or in other words, on average countries in the Americas
had life expectancy 18.8 years greater. The fitted value yielded by this equation is:

̂life exp = 𝑏0 + 𝑏Amer ⋅ 𝟙Amer(𝑥) + 𝑏Asia ⋅ 𝟙Asia(𝑥) + 𝑏Euro ⋅ 𝟙Euro(𝑥) + 𝑏Ocean ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥) + 22.8 ⋅ 𝟙Euro(𝑥) + 25.9 ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 1 + 15.9 ⋅ 0 + 22.8 ⋅ 0 + 25.9 ⋅ 0
= 54.8 + 18.8
= 73.6

185



i.e. in this case, only the indicator function 𝟙Amer(𝑥) is equal to 1, but all others are 0. Recall
that 73.6 corresponds to the group mean life expectancy for all countries in the Americas in
Table 5.8.

Similarly, 𝑏Asia = continentAsia = 15.9 is the difference in mean life expectancy of Asian
countries relative to Africa countries, or in other words, on average countries in the Asia had
life expectancy 15.9 years greater than Africa. The fitted value yielded by this equation is:

̂life exp = 𝑏0 + 𝑏Amer ⋅ 𝟙Amer(𝑥) + 𝑏Asia ⋅ 𝟙Asia(𝑥) + 𝑏Euro ⋅ 𝟙Euro(𝑥) + 𝑏Ocean ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥) + 22.8 ⋅ 𝟙Euro(𝑥) + 25.9 ⋅ 𝟙Ocean(𝑥)
= 54.8 + 18.8 ⋅ 0 + 15.9 ⋅ 1 + 22.8 ⋅ 0 + 25.9 ⋅ 0
= 54.8 + 15.9
= 70.7

Meaning, in this case, only the indicator function 𝟙Asia(𝑥) is equal to 1, but all others are
0. Recall that 70.7 corresponds to the group mean life expectancy for all countries in Asia in
Table 5.8. The same logic applies to 𝑏Euro = 22.8 and 𝑏Ocean = 25.9; they correspond to the
“offset” in mean life expectancy for countries in Europe and Oceania, relative to the mean life
expectancy of the baseline group for comparison of African countries.

Let’s generalize this idea a bit. If we fit a linear regression model using a categorical explanatory
variable 𝑥 that has 𝑘 levels, a regression model will return an intercept and 𝑘 − 1 “slope”
coefficients. When 𝑥 is a numerical explanatory variable the interpretation is of a “slope”
coefficient, but when 𝑥 is categorical the meaning is a little trickier. They are offsets relative
to the baseline.

In our case, since there are 𝑘 = 5 continents, the regression model returns an intercept corre-
sponding to the baseline for comparison Africa and 𝑘 − 1 = 4 slope coefficients corresponding
to the Americas, Asia, Europe, and Oceania. Africa was chosen as the baseline by R for no
other reason than it is first alphabetically of the 5 continents. You can manually specify which
continent to use as baseline instead of the default choice of whichever comes first alphabeti-
cally, but we leave that to a more advanced course. (The forcats package is particularly nice
for doing this and we encourage you to explore using it.)

� Learning Check 5.4

Fit a new linear regression using lm(gdpPercap ~ continent, data =
gapminder2007) where gdpPercap is the new outcome variable 𝑦. Get informa-
tion about the “best-fitting” line from the regression table by applying the summary()
function. How do the regression results match up with the results from your exploratory
data analysis above?

186



5.2.3 Observed/fitted values and residuals

Recall in Subsection 5.1.3 we defined the following three concepts:

1. Observed values 𝑦, or the observed value of the outcome variable

2. Fitted values ̂𝑦, or the value on the regression line for a given 𝑥 value

3. Residuals 𝑦 − ̂𝑦, or the error between the observed value and the fitted value

Let’s use similar code (from Subsection 5.1.3) to obtain these values for the lifeExp_model
fit to the gapminder2007 dataset:

lifeExp_model_data <- gapminder2007 %>%
select(country, lifeExp, continent) %>%
mutate(

lifeExp_hat = fitted(lifeExp_model),
residual = residuals(lifeExp_model)
)

Table 5.11: Regression points (First 10 out of 142 countries)

Table 5.11: Regression points (First 10 out of 142 countries)

country lifeExp continent lifeExp_hat residual
Afghanistan 43.8 Asia 70.7 -26.900
Albania 76.4 Europe 77.6 -1.226
Algeria 72.3 Africa 54.8 17.495
Angola 42.7 Africa 54.8 -12.075
Argentina 75.3 Americas 73.6 1.712
Australia 81.2 Oceania 80.7 0.516
Austria 79.8 Europe 77.6 2.180
Bahrain 75.6 Asia 70.7 4.907
Bangladesh 64.1 Asia 70.7 -6.666
Belgium 79.4 Europe 77.6 1.792

Observe in Table 5.11 that lifeExp_hat contains the fitted values ̂𝑦 = ̂𝑙𝑖𝑓𝑒𝐸𝑥𝑝. If you look
closely, there are only 5 possible values for lifeExp_hat. These correspond to the five mean
life expectancies for the 5 continents that we displayed in Table 5.8 and computed using the
“Estimate” column of the regression results in @tbl-catxplot4b.

The residual column is simply 𝑦 − ̂𝑦 = lifeexp - lifeexp_hat. These values can be inter-
preted as that particular country’s deviation from the mean life expectancy of the respective

187



continent’s mean. For example, the first row of Table @ref(tab:lifeExp-reg-points) corresponds
to Afghanistan, and the residual of 𝑦 − ̂𝑦 = 43.8−70.7 = −26.9 is telling us that Afghanistan’s
life expectancy is a whopping 26.9 years lower than the mean life expectancy of all Asian coun-
tries. This can in part be explained by the many years of war that country has suffered.

� Learning Check 5.5

Using either the sorting functionality of RStudio’s spreadsheet viewer or using the data
wrangling tools you learned in Chapter 3, identify the five countries with the five small-
est (most negative) residuals? What do these negative residuals say about their life
expectancy relative to their continents?

� Learning Check 5.6

Repeat this process, but identify the five countries with the five largest (most positive)
residuals. What do these positive residuals say about their life expectancy relative to
their continents?

5.3 Related topics

5.3.1 Correlation coefficient

Let’s re-plot Figure 5.1, but now consider a broader range of correlation coefficient values in
Figure 5.11.

As we suggested in Subsection 5.1.1, interpreting coefficients that are not close to the extreme
values of -1 and 1 can be subjective. To help develop your sense of correlation coefficients,
we suggest you play the following 80’s-style video game called “Guess the correlation” at
http://guessthecorrelation.com/.

5.3.2 Correlation is not necessarily causation

You’ll note throughout this chapter we’ve been very cautious in making statements of the
“associated effect” of explanatory variables on the outcome variables, for example our statement
from Subsection 5.1.2 that “for every increase of 1 unit in bty_avg, there is an associated
increase of, on average, 18.802 units of score.” We stay this because we are careful not to
make causal statements. So while beauty score bty_avg is positively correlated with teaching
score, does it directly cause effects on teaching score.

188

http://guessthecorrelation.com/


0.75 0.9 1

−0.3 0 0.3

−1 −0.9 −0.75

x

y

Figure 5.11: Different Correlation Coefficients

189



For example, let’s say an instructor has their bty_avg reevaluated, but only after taking
steps to try to boost their beauty score. Does this mean that they will suddenly be a better
instructor? Or will they suddenly get higher teaching scores? Maybe?

Here is another example, a not-so-great medical doctor goes through their medical records and
finds that patients who slept with their shoes on tended to wake up more with headaches. So
this doctor declares “Sleeping with shoes on cause headaches!”

Figure 5.12: Does sleeping with shoes on cause headaches?

However as some of you might have guessed, if someone is sleeping with their shoes on it’s
probably because they are intoxicated. Furthermore, drinking more tends to cause more
hangovers, and hence more headaches.

In this instance, alcohol is what’s known as a confounding/lurking variable. It “lurks” behind
the scenes, confounding or making less apparent, the causal effect (if any) of “sleeping with
shoes on” with waking up with a headache. We can summarize this notion in Figure 5.13 with
a causal graph where:

• Y: Is an outcome variable, here “waking up with a headache.”
• X: Is a treatment variable whose causal effect we are interested in, here “sleeping with

shoes on.”

So for example, many such studies use regression modeling where the outcome variable is set
to Y and the explanatory/predictor variable is X, much as you’ve started learning how to do
in this chapter. However, Figure 5.13 also includes a third variable with arrows pointing at
both X and Y.

• Z: Is a confounding variable that affects both X & Y, thus “confounding” their relation-
ship.

So as we said, alcohol will both cause people to be more likely to sleep with their shoes on
as well as more likely to wake up with a headache. Thus when evaluating what causes one to
wake up with a headache, its hard to tease out the effect of sleeping with shoes on versus just

190



Figure 5.13: Causal graph

the alcohol. Thus our model needs to also use Z as an explanatory/predictor variable as well,
in other words our doctor needs to take into account who had been drinking the night before.
We’ll start covering multiple regression models that allows us to incorporate more than one
variable in the next chapter.

Establishing causation is a tricky problem and frequently takes either carefully designed ex-
periments or methods to control for the effects of potential confounding variables. Both these
approaches attempt either to remove all confounding variables or take them into account as
best they can, and only focus on the behavior of an outcome variable in the presence of the
levels of the other variable(s). Be careful as you read studies to make sure that the writers
aren’t falling into this fallacy of correlation implying causation. If you spot one, you may want
to send them a link to Spurious Correlations.

5.3.3 Best-fitting line

Regression lines are also known as “best-fitting” lines. But what do we mean by “best”? Let’s
unpack the criteria that is used in regression to determine “best.” Recall Figure 5.6, where for
an instructor with a beauty score of 𝑥 = 7.333 we mark the observed value 𝑦 with a circle, the
fitted value ̂𝑦 with a square, and the residual 𝑦 − ̂𝑦 with an arrow.

191

http://www.tylervigen.com/spurious-correlations


We re-display Figure 5.6 in the top-left plot of Figure 5.14. Furthermore, let’s repeat this for
three more arbitrarily chosen course’s instructors:

1. A course whose instructor had a “beauty” score 𝑥 = 2.333 and teaching score 𝑦 = 2.7.
The residual in this case is 2.7 − 4.036 = −1.336, which we mark with a new arrow in
the top-right plot.

2. A course whose instructor had a “beauty” score 𝑥 = 3.667 and teaching score 𝑦 = 4.4.
The residual in this case is 4.4 − 4.125 = 0.2753, which we mark with a new arrow in the
bottom-left plot.

3. A course whose instructor had a “beauty” score 𝑥 = 6 and teaching score 𝑦 = 3.8. The
residual in this case is 3.8 − 4.28 = −0.4802, which we mark with a new arrow in the
bottom-right plot.

Now say we repeated this process of computing residuals for all 463 courses’ instructors, then
we squared all the residuals, and then we summed them. We call this quantity the sum of
squared residuals and it is a measure of the lack of fit of a model. Larger values of the sum of
squared residuals indicate a bigger lack of fit. This corresponds to a worse fitting model.

If the regression line fits all the points perfectly, then the sum of squared residuals is 0. This
is because if the regression line fits all the points perfectly, then the fitted value ̂𝑦 equals the
observed value 𝑦 in all cases, and hence the residual 𝑦 − ̂𝑦 = 0 in all cases, and the sum of
even a large number of 0’s is still 0.

Furthermore, of all possible lines we can draw through the cloud of 463 points, the regression
line minimizes this value. In other words, the regression and its corresponding fitted values ̂𝑦
minimizes the sum of the squared residuals:

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

Let’s use our data wrangling tools from Chapter 3 to compute the sum of squared residuals
exactly:

# Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)

# Get regression points:
score_model_data <- evals_ch5 %>%
select(score, bty_avg) %>%
mutate(

score_hat = fitted(score_model),
residual = residuals(score_model)
) %>%

192



3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

First instructor's residual

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Adding second instructor's residual

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Adding third instructor's residual

3

4

5

2 4 6 8
Beauty Score

Te
ac

hi
ng

 S
co

re

Adding fourth instructor's residual

Figure 5.14: Example of observed value, fitted value, and residual

193



rownames_to_column("ID")

# Compute sum of squared residuals
score_model_data %>%
mutate(squared_residuals = residual^2) %>%
summarize(sum_of_squared_residuals = sum(squared_residuals))

# A tibble: 1 x 1
sum_of_squared_residuals

<dbl>
1 132.

Any other straight line drawn in the figure would yield a sum of squared residuals greater than
132. This is a mathematically guaranteed fact that you can prove using calculus and linear
algebra. That’s why alternative names for the linear regression line are the best-fitting line as
well as the least-squares line. Why do we square the residuals (i.e. the arrow lengths)? We do
this so that both positive and negative deviations of the same amount are treated equally.

5.4 Conclusion

5.4.1 Additional resources

As we suggested in Subsection 5.1.1, interpreting coefficients that are not close to the extreme
values of -1, 0, and 1 can be somewhat subjective. To help develop your sense of correla-
tion coefficients, we suggest you play the following 80’s-style video game called “Guess the
correlation” at http://guessthecorrelation.com/.

5.4.2 What’s to come?

In this chapter, you’ve studied the term basic regression, where you fit models that only have
one explanatory variable. In Chapter 6, we’ll study multiple regression, where our regression
models can now have more than one explanatory variable! In particular, we’ll consider two
scenarios: regression models with one numerical and one categorical explanatory variable and
regression models with two numerical explanatory variables. This will allow you to construct
more sophisticated and more powerful models, all in the hopes of better explaining your
outcome variable 𝑦.

194

http://guessthecorrelation.com/


5.5 Exercises

5.5.1 Conceptual

Exercise 5.1. Match the following graph with the most appropriate correlation coefficient.

a) -1
b) -0.9
c) -0.7
d) -0.4
e) None of the above, it is a positive association

Exercise 5.2. What is the most appropriate correlation between an hourly employees pay-
check and the number of hours worked?

a) Exactly -1
b) Between -1 and 0
c) About 0
d) Between 0 and 1
e) Exactly 1

Exercise 5.3. What is the most appropriate correlation between the distance up a mountain
and temperature?

a) Exactly -1
b) Between -1 and 0
c) About 0
d) Between 0 and 1
e) Exactly 1

Exercise 5.4. Select all that apply to complete the following statement: The variable x is
also called the ____

a) explanatory variable

195



b) predictor variable
c) outcome variable
d) independent variable
e) dependent variable
f) covariate

Exercise 5.5. Select all that apply to complete the following statement: The variable y is
also called the ____

a) explanatory variable
b) predictor variable
c) outcome variable
d) independent variable
e) dependent variable
f) covariate

Exercise 5.6. Consider the regression line ̂𝑦 = 5.25 + 3.86𝑥. Which of the following does 5.25
refer to? Select all that apply.

a) slope coefficient
b) the increase in ̂𝑦 for every increase of 1 in 𝑥
c) 𝑏0
d) 𝑏1
e) the value of ̂𝑦 when 𝑥 = 0
f) intercept

Exercise 5.7. Consider the regression line ̂𝑦 = 5.25 + 3.86𝑥. Which of the following is the
correct interpretation of 3.86?

a) For every increase of 1 unit in y, there is an associated increase of 3.86 units of x.
b) For every increase of 1 unit in x, there is an associated increase of 3.86 units of y.
c) For every increase of 1 unit in y, there is an associated increase of, on average, 3.86 units

of x.
d) For every increase of 1 unit in x, there is an associated increase of, on average, 3.86 units

of y.
e) For every increase of 1 unit in y, there is a causal increase of, on average, 3.86 units of x.
f) For every increase of 1 unit in x, there is a causal increase of, on average, 3.86 units of y.

Exercise 5.8. The residual is the difference between the observed value and the predicted
value. This can be thought of as the error in prediction from the regression line.

a) TRUE
b) FALSE

196



Exercise 5.9. If a linear regression model 𝑦 𝑥 is fitted where 𝑥 is a categorical variable, then
𝑏1 is the mean of the baseline.

a) TRUE
b) FALSE

Exercise 5.10. The regression line minimizes the following equation ∑𝑛
𝑖=0(𝑦𝑖 − ̂𝑦𝑖)

a) TRUE
b) FALSE

Exercise 5.11. An ice cream company employee explores a data set with information on shark
attacks and ice cream sales, and notices a positive correlation between these two variables. The
employee concludes that an increase in shark attacks will help them sell more ice cream. Is
this conclusion correct?

a) Yes, the positive correlation shows that an increase in shark attacks causes ice cream
sales to improve.

b) Yes, the positive correlation shows that an increase in ice cream sales causes shark attacks
to increase.

c) No, the positive correlation shows that an increase in ice cream sales causes shark attacks
to increase.

d) No, the positive correlation does not necessarily imply causation.

5.5.2 Application

The application exercises use datasets from the ISDSdatasets package.

Exercise 5.12. Using the covid_states dataset…

a) Conduct an exploratory data analysis. That is, use the skim function to describe the
number of variables, observations, any missingness issues, and any potential problematic
features.

b) Calculate the correlation between new_tested and new_confirmed.
c) Plot the relationship of new_confirmed by new_tested. Add the line of best fit to the

scatterplot.
d) Fit a linear regression model to predict new_confirmed based on new_tested. What is

the equation of the line?
e) Interpret the intercept and slope in the context of the problem.
f) If 20,000 people are tested for COVID, how many people do we expect to have COVID?

Exercise 5.13. Using the nba dataset, fit a simple linear regression model to predict total
team points using the total points the player scored.

197



a) What is the correlation between pts_tm and pts.
b) Plot the relationship and line of best fit.
c) What is the equation of the line of best fit?
d) Interpret the intercept and slope in the context of the problem.
e) If a player scored 50 points, what is the predicted team’s score?

Exercise 5.14. Using the titanic dataset, fit a linear regression model to determine if the
port that the passenger embarked on can predict the cost of the passenger’s ticket.

a) What is the model equation?
b) Interpret the intercept in the context of the problem.
c) Which port, on average, had the highest ticket cost?
d) Which passenger did the model predict the worst?

5.5.3 Advanced

Exercise 5.15. The summary function and the lm function contain many values relevant to
our analysis, including residuals and fitted values stored in the lm function and residuals,
coefficients, R-squared and adjusted R-squared values all stored in the summary function.

Sometimes, it can be useful to extract these values directly from the result of the functions.
These values can be accessed using the $ operator that we learned about in Chapter 1.

Using the model from Exercise 5.13…

a) extract the coefficients directly from the model
b) extract the r.squared from the summary. This represents the proportion of variance

in the dependent variable that can be explained by the independent variables. You will
learn about this in detail in higher level regression courses.

198



6 Multiple Regression

In Chapter 5 we introduced ideas related to modeling for explanation, in particular that the
goal of modeling is to make explicit the relationship between some outcome variable 𝑦 and
some explanatory variable 𝑥. While there are many approaches to modeling, we focused
on one particular technique: linear regression, one of the most commonly-used and easy-to-
understand approaches to modeling. Furthermore to keep things simple we only considered
models with one explanatory 𝑥 variable that was either numerical in Section 5.1 or categorical
in Section 5.2.

In this chapter on multiple regression, we’ll start considering models that include more than one
explanatory variable 𝑥. You can imagine when trying to model a particular outcome variable,
like teaching evaluation scores as in Section 5.1 or life expectancy as in Section 5.2, that it
would be useful to include more than just one explanatory variable’s worth of information.

Since our regression models will now consider more than one explanatory variable, the inter-
pretation of the associated effect of any one explanatory variable must be made in conjunction
with the other explanatory variables included in your model. Let’s begin!

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
Recall from our discussion in Subsection 4.4.1 that loading the tidyverse package by running
library(tidyverse) loads the following commonly used data science packages all at once:

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to “tidy” format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(moderndive)
library(skimr)
library(ISLR)

199



6.1 Two numerical explanatory variables

Let’s first consider a multiple regression model with two numerical explanatory variables. The
dataset we’ll use is from “An Introduction to Statistical Learning with Applications in R
(ISLR)”, an intermediate-level textbook on statistical and machine learning. Its accompanying
ISLR R package contains the datasets that the authors apply various machine learning methods
to.

One frequently used dataset in this book is the Credit dataset, where the outcome variable
of interest is the credit card debt of 400 individuals. Other variables like income, credit
limit, credit rating, and age are included as well. Note that the Credit data is not based on
real individuals’ financial information, but rather is a simulated dataset used for educational
purposes.

In this section, we’ll fit a regression model where we have

1. A numerical outcome variable 𝑦, the cardholder’s credit card debt
2. Two explanatory variables:

1. One numerical explanatory variable 𝑥1, the cardholder’s credit limit
2. Another numerical explanatory variable 𝑥2, the cardholder’s income (in thousands

of dollars).

6.1.1 Exploratory data analysis

Let’s load the Credit dataset, but to keep things simple let’s select() only the subset of
the variables we’ll consider in this chapter, and save this data in a new data frame called
credit_ch6. Notice our slightly different use of the select() verb here than we introduced
in Subsection 3.8.1. For example, we’ll select the Balance variable from Credit but then save
it with a new variable name debt. We do this because here the term “debt” is a little more
interpretable than “balance.”

library(ISLR)
credit_ch6 <- Credit %>%
as_tibble() %>%
select(debt = Balance, credit_limit = Limit,

income = Income, credit_rating = Rating, age = Age)

Recall the three common steps in an exploratory data analysis we saw in Subsection 5.1.1:

1. Looking at the raw data values.
2. Computing summary statistics.
3. Creating data visualizations.

200

http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/


Let’s begin by looking at the raw values either in RStudio’s spreadsheet viewer or by using
the glimpse() function from the dplyr package. You can observe the effect of our use of
select() to keep and rename the relevant variables.

glimpse(credit_ch6)

Rows: 400
Columns: 5
$ debt <int> 333, 903, 580, 964, 331, 1151, 203, 872, 279, 1350, 1407~
$ credit_limit <int> 3606, 6645, 7075, 9504, 4897, 8047, 3388, 7114, 3300, 68~
$ income <dbl> 14.9, 106.0, 104.6, 148.9, 55.9, 80.2, 21.0, 71.4, 15.1,~
$ credit_rating <int> 283, 483, 514, 681, 357, 569, 259, 512, 266, 491, 589, 1~
$ age <int> 34, 82, 71, 36, 68, 77, 37, 87, 66, 41, 30, 64, 57, 49, ~

Furthermore, let’s look at a random sample of five out of the 400 credit card holders in Table 6.1.
Once again, note that due to the random nature of the sampling, you will likely end up with
a different subset of five rows.

set.seed(9)
credit_ch6 %>%
sample_n(size = 5)

Table 6.1: Random sample of 5 credit card holders.

Table 6.1: Random sample of 5 credit card holders.

debt credit_limit income credit_rating age
1259 8376 123.3 610 89
227 6033 108.0 449 64
467 4534 32.8 333 44
846 7576 94.2 527 44
436 4866 45.0 347 30

Now that we’ve looked at the raw values in our credit_ch6 data frame and have a sense of
the data, let’s move on to the next common step in an exploratory data analysis: computing
summary statistics. As we did in our exploratory data analyses in Subsections 5.1.1 and 5.2.1
from the previous chapter, let’s use the skim() function from the skimr package, being sure
to only select() the variables of interest in our model:

201



credit_ch6 %>%
select(debt, credit_limit, income) %>%
skim()

Skim summary statistics
n obs: 400
n variables: 3
�� Variable type:integer �������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100

credit_limit 0 400 400 4735.6 2308.2 855 3088 4622.5 5872.75 13913
debt 0 400 400 520.01 459.76 0 68.75 459.5 863 1999

�� Variable type:numeric �������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100
income 0 400 400 45.22 35.24 10.35 21.01 33.12 57.47 186.63

Observe the summary statistics for the outcome variable debt: the mean and median credit
card debt are $520.01 and $459.50 respectively and that 25% of card holders had debts of
$68.75 or less. Let’s now look at one of the explanatory variables credit_limit: the mean
and median credit card limit are $4735.6 and $4622.50 respectively while 75% of card holders
had incomes of $57,470 or less.

Since our outcome variable debt and the explanatory variables credit_limit and income are
numerical, we can compute the correlation coefficient between the different possible pairs of
these variables. First, we can run the cor() command as seen in Subsections 5.1.1 twice, once
for each explanatory variable:

cor(credit_ch6$debt, credit_ch6$credit_limit)

cor(credit_ch6$debt, credit_ch6$income)

Or we can simultaneously compute them by returning a correlation matrix which we display
in Table 6.2. We can read off the correlation coefficient for any pair of variables by looking
them up in the appropriate row/column combination.

credit_ch6 %>%
select(debt, credit_limit, income) %>%
cor()

202



Table 6.2: Correlation coefficients between credit card debt, credit limit, and income.

Table 6.2: Correlation coefficients between credit card debt, credit limit, and income.

debt credit_limit income
debt 1.000 0.862 0.464
credit_limit 0.862 1.000 0.792
income 0.464 0.792 1.000

For example, the correlation coefficient of:

1. debt with itself is 1 as we would expect based on the definition of the correlation coeffi-
cient.

2. debt with credit_limit is 0.862. This indicates a strong positive linear relationship,
which makes sense as only individuals with large credit limits can accrue large credit
card debts.

3. debt with income is 0.464. This is suggestive of another positive linear relationship,
although not as strong as the relationship between debt and credit_limit.

4. As an added bonus, we can read off the correlation coefficient between the two explana-
tory variables of credit_limit and income as 0.792.

We say there is a high degree of collinearity between the credit_limit and income explanatory
variables. Collinearity (or multicollinearity) is a phenomenon where one explanatory variable
in a multiple regression model is highly correlated with another.

So in our case since credit_limit and income are highly correlated, if we knew someone’s
credit_limit, we could make pretty good guesses about their income as well. Thus, these two
variables provide somewhat redundant information. However, we’ll leave discussion on how
to work with collinear explanatory variables to a more intermediate-level book on regression
modeling.

Let’s visualize the relationship of the outcome variable with each of the two explanatory
variables in two separate plots in Figure 6.1.

ggplot(credit_ch6, aes(x = credit_limit, y = debt)) +
geom_point() +
labs(x = "Credit limit (in $)", y = "Credit card debt (in $)",

title = "Debt and credit limit") +
geom_smooth(method = "lm", se = FALSE)

ggplot(credit_ch6, aes(x = income, y = debt)) +
geom_point() +
labs(x = "Income (in $1000)", y = "Credit card debt (in $)",

203



title = "Debt and income") +
geom_smooth(method = "lm", se = FALSE)

0

500

1000

1500

2000

5000 10000
Credit limit (in $)

C
re

di
t c

ar
d 

de
bt

 (
in

 $
)

Debt and credit limit

0

500

1000

1500

2000

50 100 150
Income (in $1000)

Debt and income

Figure 6.1: Relationship between credit card debt and credit limit/income.

Observe there is a positive relationship between credit limit and credit card debt: as credit limit
increases so also does credit card debt. This is consistent with the strongly positive correlation
coefficient of 0.862 we computed earlier. In the case of income, the positive relationship doesn’t
appear as strong, given the weakly positive correlation coefficient of 0.464.

However, the two plots in Figure 6.1 only focus on the relationship of the outcome variable
with each of the two explanatory variables separately. To visualize the joint relationship of all
three variables simultaneously, we need a 3-dimensional (3D) scatterplot as seen in Figure 6.2.
Each of the 400 observations in the credit_ch6 data frame are marked with a point where

1. The numerical outcome variable 𝑦 debt is on the vertical axis
2. The two numerical explanatory variables, 𝑥1 income and 𝑥2 credit_limit, are on the

two axes that form the bottom plane.

Furthermore, we also include the regression plane. Recall from Subsection 5.3.3 that regression
lines are “best-fitting” in that of all possible lines we can draw through a cloud of points, the

204



Figure 6.2: 3D scatterplot and regression plane

205



regression line minimizes the sum of squared residuals. This concept also extends to models
with two numerical explanatory variables. The difference is instead of a “best-fitting” line, we
now have a “best-fitting” plane that similarly minimizes the sum of squared residuals. Head
to here to open an interactive version of this plot in your browser.

� Learning Check 6.1

(LC6.2) Conduct a new exploratory data analysis with the same outcome variable 𝑦
being debt but with credit_rating and age as the new explanatory variables 𝑥1 and
𝑥2. Remember, this involves three things:

1. Most crucially: Looking at the raw data values.
2. Computing summary statistics, such as means, medians, and interquartile ranges.
3. Creating data visualizations.

What can you say about the relationship between a credit card holder’s debt and their
credit rating and age?

6.1.2 Regression plane

Let’s now fit a regression model and get the regression table corresponding to the regression
plane in Figure 6.2. We’ll consider a model fit with a formula of the form y ~ x1 + x2, where
x1 and x2 represent our two explanatory variables credit_limit and income.

Just like we did in Chapter 5, let’s get the regression table for this model using our two-step
process and display the results in Table 6.3.

1. We first “fit” the linear regression model using the lm(y ~ x1 + x2, data) function
and save it in debt_model.

2. We get the regression table by applying the summary() function to debt_model.

# Fit regression model:
debt_model <- lm(debt ~ credit_limit + income, data = credit_ch6)
# Get regression table:
summary(debt_model)$coefficients

Table 6.3: Multiple regression table

Table 6.3: Multiple regression table

Estimate Std. Error t value Pr(>|t|)
(Intercept) -385.179 19.465 -19.8 0

206

https://beta.rstudioconnect.com/connect/#/apps/3214/


Estimate Std. Error t value Pr(>|t|)
credit_limit 0.264 0.006 45.0 0
income -7.663 0.385 -19.9 0

Let’s interpret the three values in the Estimate column. First, the Intercept value
is -$385.179. This intercept represents the credit card debt for an individual who has
credit_limit of $0 and income of $0. In our data however, the intercept has limited
practical interpretation since no individuals had credit_limit or income values of $0.
Rather, the intercept is used to situate the regression plane in 3D space.

Second, the credit_limit value is $0.264. Taking into account all the other explanatory
variables in our model, for every increase of one dollar in credit_limit, there is an associated
increase of on average $0.26 in credit card debt. Just as we did in Section 5.1.2, we are cautious
to not imply causality as we saw in Section 5.3.2 that “correlation is not necessarily causation.”
We do this merely stating there was an associated increase.

Furthermore, we preface our interpretation with the statement “taking into account all the
other explanatory variables in our model.” Here, by all other explanatory variables we mean
income. We do this to emphasize that we are now jointly interpreting the associated effect of
multiple explanatory variables in the same model at the same time.

Third, income = -$7.663. Taking into account all the other explanatory variables in our model,
for every increase of one unit in the variable income, in other words $1000 in actual income,
there is an associated decrease of on average $7.663 in credit card debt.

Putting these results together, the equation of the regression plane that gives us fitted values
̂𝑦 = d̂ebt is:

̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥1 + 𝑏2 ⋅ 𝑥2

d̂ebt = 𝑏0 + 𝑏limit ⋅ limit + 𝑏income ⋅ income
= −385.179 + 0.264 ⋅ limit − 7.663 ⋅ income

Recall in the right-hand plot of Figure 6.1 that when plotting the relationship between debt
and income in isolation, there appeared to be a positive relationship. In the last discussed mul-
tiple regression however, when jointly modeling the relationship between debt, credit_limit,
and income, there appears to be a negative relationship of debt and income as evidenced by
the negative slope for income of -$7.663. What explains these contradictory results? A phe-
nomenon known as Simpson’s Paradox, whereby overall trends that exist in aggregate either
disappear or reverse when the data are broken down into groups. In Section 6.3.3 we elaborate
on this idea by looking at the relationship between credit_limit and credit card debt, but
split along different income brackets.

207



� Learning Check 6.3

(LC6.4) Fit a new simple linear regression using lm(debt ~ credit_rating + age,
data = credit_ch6) where credit_rating and age are the new numerical explanatory
variables 𝑥1 and 𝑥2. Get information about the “best-fitting” regression plane from the
regression table by applying the summary() function. How do the regression results match
up with the results from your previous exploratory data analysis?

6.1.3 Observed/fitted values and residuals

Let’s also compute all fitted values and residuals for our regression model using the code from
Section 5.1.3 and present only the first 10 rows of output in Table 6.4. Remember that the
coordinates of each of the points in our 3D scatterplot in Figure 6.2 can be found in the income,
credit_limit, and debt columns. The fitted values on the regression plane are found in the
debt_hat column and are computed using our equation for the regression plane in the previous
section:

̂𝑦 = d̂ebt = −385.179 + 0.264 ⋅ limit − 7.663 ⋅ income

debt_model_data <- credit_ch6 %>%
select(debt, credit_limit, income) %>%
mutate(debt_hat = fitted(debt_model),

residual = residuals(debt_model)) %>%
rownames_to_column("ID")

Table 6.4: Regression points (First 10 credit card holders out of 400).

Table 6.4: Regression points (First 10 credit card holders out of 400).

ID debt credit_limit income debt_hat residual
1 333 3606 14.9 454 -120.8
2 903 6645 106.0 559 344.3
3 580 7075 104.6 683 -103.4
4 964 9504 148.9 986 -21.7
5 331 4897 55.9 481 -150.0
6 1151 8047 80.2 1127 23.6
7 203 3388 21.0 349 -146.4
8 872 7114 71.4 948 -76.0
9 279 3300 15.1 371 -92.2
10 1350 6819 71.1 873 477.3

208



Let’s interpret these results for the third card holder. Our regression model tells us that for
a person with a credit_limit of $7,075 and an income of $104,600, we would expect them
to have credit card debt of $683, on average. We calculated this number by plugging into our
regression equation:

̂𝑦 = d̂ebt = −385.179 + 0.264 ⋅ limit − 7.663 ⋅ income
= −385.179 + 0.264(7075) − 7.663(104.6)
= 683

However, this person had an actual credit card debt of $580, so the residual for this observation
is 𝑦− ̂𝑦 = $580−$683.37 = −$103.37. Note that Table 6.4 presents rounded values for debt_hat
and residual.

6.2 One numerical & one categorical explanatory variable

Let’s revisit the instructor evaluation data from UT Austin we introduced in Section 5.1. We
studied the relationship between teaching evaluation scores as given by students and “beauty”
scores. The variable teaching score was the numerical outcome variable 𝑦 and the variable
“beauty” score (bty_avg) was the numerical explanatory 𝑥 variable.

In this section, we are going to consider a different model. Our outcome variable will still
be teaching score, but now we’ll now include two different explanatory variables: age and
gender. Could it be that instructors who are older receive better teaching evaluations from
students? Or could it instead be that younger instructors receive better evaluations? Are there
differences in evaluations given by students for instructors of different genders? We’ll answer
these questions by modeling the relationship between these variables using multiple regression,
where we have:

1. A numerical outcome variable 𝑦, the instructor’s teaching score, and
2. Two explanatory variables:

1. A numerical explanatory variable 𝑥1, the instructor’s age
2. A categorical explanatory variable 𝑥2, the instructor’s (binary) gender.

6.2.1 Exploratory data analysis

Recall that data on the 463 courses at UT Austin can be found in the evals data frame
included in the moderndive package. However, to keep things simple, let’s select() only the
subset of the variables we’ll consider in this chapter, and save this data in a new data frame
called evals_ch6. Note that these are different than the variables chosen in Chapter 5.

209



evals_ch6 <- evals %>%
select(ID, score, age, gender)

Let’s first look at the raw data values by either looking at evals_ch6 using RStudio’s spread-
sheet viewer or by using the glimpse() function:

glimpse(evals_ch6)

Rows: 463
Columns: 4
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ~
$ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4.5, 4.6~
$ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, 40, 40,~
$ gender <fct> female, female, female, female, male, male, male, male, male, f~

Let’s also display a random sample of 5 rows of the 463 rows corresponding to different courses
in Table 6.5. Remember due to the random nature of the sampling, you will likely end up
with a different subset of 5 rows.

evals_ch6 %>%
sample_n(size = 5)

Table 6.5: A random sample of 5 out of the 463 courses at UT Austin

Table 6.5: A random sample of 5 out of the 463 courses at UT Austin

ID score age gender
129 3.7 62 male
109 4.7 46 female
28 4.8 62 male

434 2.8 62 male
330 4.0 64 male

Now that we’ve looked at the raw values in our evals_ch6 data frame and have a sense of the
data, let’s compute summary statistics.

evals_ch6 %>%
select(score, age, gender) %>%
skim()

210



Skim summary statistics
n obs: 463
n variables: 3
�� Variable type:factor ��������������������������������������������������������
variable missing complete n n_unique top_counts ordered
gender 0 463 463 2 mal: 268, fem: 195, NA: 0 FALSE

�� Variable type:integer �������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100

age 0 463 463 48.37 9.8 29 42 48 57 73
�� Variable type:numeric �������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100

score 0 463 463 4.17 0.54 2.3 3.8 4.3 4.6 5

Observe for example that we have no missing data, that there are 268 courses taught by male
instructors and 195 courses taught by female instructors, and that the average instructor age
is 48.37. Recall however that each row of our data represents a particular course and that the
same instructor often teaches more than one course. Therefore the average age of the unique
instructors may differ.

Furthermore, let’s compute the correlation coefficient between our two numerical variables:
score and age. Recall from Section 5.1.1 that correlation coefficients only exist between
numerical variables. We observe that they are “weakly negatively” correlated.

evals_ch6 %>%
summarize(correlation = cor(score, age))

# A tibble: 1 x 1
correlation

<dbl>
1 -0.107

Let’s now perform the last of the three common steps in an exploratory data analysis: creating
data visualizations. Given that the outcome variable score and explanatory variable age are
both numerical, we’ll use a scatterplot to display their relationship. How can we incorporate the
categorical variable gender however? By mapping the variable gender to the color aesthetic,
thereby creating a colored scatterplot. The following code is similar to the code that created
the scatterplot of teaching score over “beauty” score in Figure 5.2, but with color = gender
added to the aes()thetic mapping.

ggplot(evals_ch6, aes(x = age, y = score, color = gender)) +
geom_point() +
labs(x = "Age", y = "Teaching Score", color = "Gender") +
geom_smooth(method = "lm", se = FALSE)

211



3

4

5

30 40 50 60 70
Age

Te
ac

hi
ng

 S
co

re

Gender

female

male

Figure 6.3: Colored scatterplot of relationship of teaching and beauty scores.

212



In the resulting Figure 6.3, observe that ggplot() assigns a default color scheme to the points
and to the lines associated with the two levels of gender: female and male. Furthermore
the geom_smooth(method = "lm", se = FALSE) layer automatically fits a different regression
line for each group.

We notice some interesting trends. First, there are almost no women faculty over the age of 60
as evidenced by lack of darker-colored dots above 𝑥 = 60. Second, while both regression lines
are negatively sloped with age (i.e. older instructors tend to have lower scores), the slope for
age for the female instructors is more negative. In other words, female instructors are paying
a harsher penalty for their age than the male instructors.

6.2.2 Interaction model

Let’s now quantify the relationship of our outcome variable 𝑦 and the two explanatory variables
using one type of multiple regression model known as an interaction model. We’ll explain where
the term “interaction” comes from at the end of this section.

In particular, we’ll write out the equation of the two regression lines in Figure 6.3 using the
values from a regression table. Before we do this however, let’s go over a brief refresher of
regression when you have a categorical explanatory variable 𝑥.
Recall in Section 5.2.2 we fit a regression model for countries’ life expectancies as a function
of which continent the country was in. In other words, we had a numerical outcome vari-
able 𝑦 = lifeExp and a categorical explanatory variable 𝑥 = continent which had 5 levels:
Africa, Americas, Asia, Europe, and Oceania. Let’s re-display the regression table you saw
in Table 5.10:

Table 6.6: Linear regression table

Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.8 1.02 53.45 0
continentAmericas 18.8 1.80 10.45 0
continentAsia 15.9 1.65 9.68 0
continentEurope 22.8 1.70 13.47 0
continentOceania 25.9 5.33 4.86 0

Recall our interpretation of the Estimate column. Since Africa was the “baseline for com-
parison” group, the Intercept term corresponds to the mean life expectancy for all countries
in Africa of 54.8 years. The other four values of Estimate correspond to “offsets” relative
to the baseline group. So, for example, the “offset” corresponding to the Americas is +18.8
as compared to the baseline for comparison group Africa. In other words, the average life
expectancy for countries in the Americas is 18.8 years higher. Thus the mean life expectancy

213



for all countries in the Americas is 54.8 + 18.8 = 73.6. The same interpretation holds for Asia,
Europe, and Oceania.

Going back to our multiple regression model for teaching score using age and gender in Fig-
ure 6.3, we generate the regression table using the same two-step approach from Chapter 5: we
first “fit” the model using the lm() “linear model” function and then we apply the summary()
function. This time however, our model formula won’t be of the form y ~ x, but rather of
the form y ~ x1 + x2 + x1 * x2. In other words, we include a main effect for each of our
two explanatory variables x1 and x2, as well as an interaction term x1 * x2. In terms of the
general mathematical equation, an interaction model with two explanatory variables is of the
form:

̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥1 + 𝑏2 ⋅ 𝑥2 + 𝑏1,2 ⋅ 𝑥1 ⋅ 𝑥2

# Fit regression model:
score_model_interaction <- lm(score ~ age + gender + age * gender, data = evals_ch6)
# Get regression table:
summary(score_model_interaction)$coefficients

Table 6.7: Regression table for interaction model.

Table 6.7: Regression table for interaction model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.883 0.205 23.80 0.000
age -0.018 0.004 -3.92 0.000
gendermale -0.446 0.265 -1.68 0.094
age:gendermale 0.014 0.006 2.45 0.015

Looking at the regression table output in Table 6.7, we see there are four rows of values in the
Estimate column that correspond to the 4 estimated components of the model: 𝑏0, 𝑏1, 𝑏2,
and 𝑏1,2. Note that we chose to use the notation 𝑏1,2 to make it clear this is the coefficient for
the interaction term between 𝑥1 and 𝑥2, but we could have easily decided to denote this as 𝑏3
instead. While it is not immediately apparent, using these four values we can write out the
equations of both lines in Figure 6.3.

First, since the word female comes alphabetically before male, female instructors are the
“baseline for comparison” group. Therefore Intercept is the intercept for only the female
instructors. This holds similarly for age. It is the slope for age for only the female instructors.
Thus the darker-colored regression line in Figure 6.3 has an intercept of 4.883 and slope for
age of -0.018. Remember that for this particular data, while the intercept has a mathematical

214



interpretation, it has no practical interpretation since there can’t be any instructors with age
zero.

What about the intercept and slope for age of the male instructors (i.e. the lighter-colored line
in Figure 6.3)? This is where our notion of “offsets” comes into play once again. The value
for gendermale of -0.446 is not the intercept for the male instructors, but rather the offset in
intercept for male instructors relative to female instructors. Therefore, the intercept for the
male instructors is Intercept + gendermale = 4.883 + (-0.446) = 4.883 - 0.446 = 4.437.

Similarly, age:gendermale = 0.014 is not the slope for age for the male instructors, but rather
the offset in slope for the male instructors. Therefore, the slope for age for the male instructors
is age + age:gendermale = -0.018 + 0.014 = -0.004. Therefore the lighter-colored regression
line in Figure 6.3 has intercept 4.437 and slope for age of -0.004.

Let’s summarize these values in Table 6.8 and focus on the two slopes for age:

Table 6.8: Comparison of intercepts and slopes for interaction model.

Table 6.8: Comparison of intercepts and slopes for interaction model.

Gender Intercept Slope for age
Female instructors 4.883 -0.018
Male instructors 4.437 -0.004

Since the slope for age for the female instructors was -0.018, it means that on average, a female
instructor who is a year older would have a teaching score that is 0.018 units lower. For the male
instructors however, the corresponding associated decrease was on average only 0.004 units.
While both slopes for age were negative, the slope for age for the female instructors is more
negative. This is consistent with our observation from Figure 6.3, that this model is suggesting
that age impacts teaching scores for female instructors more than for male instructors.

Let’s now write the equation for our regression lines, which we can use to compute our fitted
values ̂𝑦 = ŝcore.

̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥) + 𝑏age,male ⋅ age ⋅ 𝟙is male
= 4.883 − 0.018 ⋅ age − 0.446 ⋅ 𝟙is male(𝑥) + 0.014 ⋅ age ⋅ 𝟙is male

Whoa! That’s even more daunting than the equation you saw for the life expectancy as a
function of continent in Section 5.2.2! However if you recall what an “indicator function”
AKA “dummy variable” does, the equation simplifies greatly. In the previous equation, we
have one indicator function of interest:

215



𝟙is male(𝑥) = { 1 if instructor 𝑥 is male
0 otherwise

Second, let’s match coefficients in the previous equation with values in the Estimate column
in our regression table in Table 6.7:

1. 𝑏0 is the Intercept = 4.883 for the female instructors
2. 𝑏age is the slope for age = -0.018 for the female instructors
3. 𝑏male is the offset in intercept for the male instructors
4. 𝑏age,male is the offset in slope for age for the male instructors

Let’s put this all together and compute the fitted value ̂𝑦 = ŝcore for female instructors. Since
for female instructors 𝟙is male(𝑥) = 0, the previous equation becomes

̂𝑦 = ŝcore = 4.883 − 0.018 ⋅ age − 0.446 ⋅ 0 + 0.014 ⋅ age ⋅ 0
= 4.883 − 0.018 ⋅ age − 0 + 0
= 4.883 − 0.018 ⋅ age

which is the equation of the darker-colored regression line in Figure 6.3 corresponding to the
female instructors in Table 6.8. Correspondingly, since for male instructors 𝟙is male(𝑥) = 1,
the previous equation becomes

̂𝑦 = ŝcore = 4.883 − 0.018 ⋅ age − 0.446 + 0.014 ⋅ age
= (4.883 − 0.446) + (−0.018 + 0.014) ∗ age
= 4.437 − 0.004 ⋅ age

which is the equation of the lighter-colored regression line in Figure 6.3 corresponding to the
male instructors in Table 6.8.

Phew! That was a lot of arithmetic! Don’t fret however, this is as hard as modeling will get in
this book. If you’re still a little unsure about using indicator functions and using categorical
explanatory variables in a regression model, we highly suggest you re-read Section 5.2.2. This
involves only a single categorical explanatory variable and thus is much simpler.

Before we end this section, we explain why we refer to this type of model as an “interaction
model.” The 𝑏age,male term in the equation for the fitted value ̂𝑦 = ŝcore is what’s known
in statistical modeling as an “interaction effect.” The interaction term corresponds to the
age:gendermale = 0.014 in the final row of the regression table in Table 6.7.

We say there is an interaction effect if the associated effect of one variable depends on the value
of another variable. In other words, the two variables are “interacting” with each other. In
our case, the associated effect of the variable age depends on the value of the other variable

216



gender. This was evidenced by the difference in slopes for age of +0.014 of male instructors
relative to female instructors.

Another way of thinking about interaction effects on teaching scores is as follows. For a given
instructor at UT Austin, there might be an associated effect of their age by itself, there might
be an associated effect of their gender by itself, but when age and gender are considered together
there might an additional effect above and beyond the two individual effects.

6.2.3 Parallel slopes model

When creating regression models with one numerical and one categorical explanatory variable,
we are not just limited to interaction models as we just saw. Another type of model we can
use is known as a parallel slopes model. Unlike interaction models where the regression lines
can have different intercepts and different slopes, parallel slopes models still allow for different
intercepts but force all lines to have the same slope. The resulting regression lines are thus
parallel. We can think of a parallel slopes model as a restricted case of the interaction model
where we’ve forced 𝑏1,2, the coefficient of the interaction term 𝑥1 ⋅ 𝑥2, to be zero. Therefore,
the mathematical equation for a parallel slopes model with two explanatory variables is of the
form:

̂𝑦 = ŝcore = 𝑏0 + 𝑏1 ⋅ 𝑥1 + 𝑏2 ⋅ 𝑥2 + 𝑏1,2 ⋅ 𝑥1 ⋅ 𝑥2
= 𝑏0 + 𝑏1 ⋅ 𝑥1 + 𝑏2 ⋅ 𝑥2 + 0 ⋅ 𝑥1 ⋅ 𝑥2
= 𝑏0 + 𝑏1 ⋅ 𝑥1 + 𝑏2 ⋅ 𝑥2

Unfortunately, the ggplot2 package does not have a convenient way to plot a parallel slopes
model, so we just display it for you in Figure 6.4 but leave the code for a more advanced data
visualization class.

Observe in Figure 6.4 that we have parallel lines corresponding to the female and male instruc-
tors respectively: here they have the same negative slope. This is different from the interaction
model displayed in Figure 6.3, which allowed male and female to have different slopes. Fig-
ure 6.4 is telling us that instructors who are older will tend to receive lower teaching scores
than instructors who are younger. Furthermore, since the lines are parallel, the associated
penalty for aging is assumed to be the same for both female and male instructors.

However, observe also in Figure 6.4 that these two lines have different intercepts as evidenced
by the fact that the lighter-colored line corresponding to the male instructors is higher than the
darker-colored line corresponding to the female instructors. This is telling us that irrespective
of age, female instructors tended to receive lower teaching scores than male instructors.

In order to obtain the precise numerical values of the two intercepts and the single common
slope, we once again “fit” the model using the lm() “linear model” function and then apply
the summary() function. Our model formula this time is of the form y ~ x1 + x2, where x1

217



3

4

5

30 40 50 60 70
age

sc
or

e

gender

female

male

Figure 6.4: Parallel slopes model of relationship of score with age and gender.

218



and x2 represent the two predictor variables, age and gender, but we do not include the extra
interaction term x1 * x2.

# Fit regression model:
score_model_parallel_slopes <- lm(score ~ age + gender, data = evals_ch6)
# Get regression table:
summary(score_model_parallel_slopes)$coefficients

Table 6.9: Regression table for parallel slopes model.

Table 6.9: Regression table for parallel slopes model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.484 0.125 35.79 0.000
age -0.009 0.003 -3.28 0.001
gendermale 0.191 0.052 3.63 0.000

Looking at the regression table output in Table 6.9, we see there are three rows of values in
the Estimate column. Similar to what we did in Section 6.2.2, using these three values we
can write out the equations of both lines in Figure 6.4.

Again, since the word female comes alphabetically before male, female instructors are the
“baseline for comparison” group. Therefore, Intercept is the intercept for only the female
instructors. Thus the red regression line in Figure 6.4 has an intercept of 4.484.

Remember, the value for gendermale of 0.191 is not the intercept for the male instructors, but
rather the offset in intercept for male instructors relative to female instructors. Therefore, the
intercept for male instructors is Intercept + gendermale = 4.484 + 0.191 = 4.675. In other
words, in Figure 6.4 the darker-colored regression line corresponding to the female instructors
has an intercept of 4.484 while the lighter-colored regression line corresponding to the male
instructors has an intercept of 4.675. Once again, since there aren’t any instructors of age 0,
the intercepts only have a mathematical interpretation but no practical one.

Unlike in Table 6.7 however, we now only have a single slope for age of -0.009. This is because
the model specifies that both the female and male instructors have a common slope for age.
This is telling us that an instructor who is a year older than another instructor received a
teaching score that is on average 0.009 units lower. This penalty for aging applies equally for
both female and male instructors.

Let’s summarize these values in Table 6.10, noting the different intercepts but common
slopes:

219



Table 6.10: Comparison of intercepts and slope for parallel slopes model.

Table 6.10: Comparison of intercepts and slope for parallel slopes model.

Gender Intercept Slope for age
Female instructors 4.484 -0.009
Male instructors 4.675 -0.009

Recall that the common slope occurs because we chose not to include the interaction term
age ⋅ 𝟙is male in our model. This is equivalent to assuming 𝑏𝑎𝑔𝑒,𝑚𝑎𝑙𝑒 = 0 and therefore not
allowing there to be an “offset” in slope for males.

Let’s now write the equation for our parallel slopes regression lines, which we can use to
compute our fitted values ̂𝑦 = ŝcore.

̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥)
= 4.484 − 0.009 ⋅ age + 0.191 ⋅ 𝟙is male(𝑥)

Let’s put this all together and compute the fitted value ̂𝑦 = ŝcore for female instructors. Since
for female instructors the indicator function 𝟙is male(𝑥) = 0, the previous equation becomes

̂𝑦 = ŝcore = 4.484 − 0.009 ⋅ age + 0.191 ⋅ 0
= 4.484 − 0.009 ⋅ age

which is the equation of the darker-colored regression line in Figure 6.4 corresponding to
the female instructors. Correspondingly, since for male instructors the indicator function
𝟙is male(𝑥) = 1, the previous equation becomes

̂𝑦 = ŝcore = 4.484 − 0.009 ⋅ age + 0.191 ⋅ 1
= (4.484 + 0.191) − 0.009 ⋅ age
= 4.67 − 0.009 ⋅ age

which is the equation of the lighter-colored regression line in Figure 6.4 corresponding to the
male instructors.

Great! We’ve considered both an interaction model and a parallel slopes model for our data.
Let’s compare the visualizations for both models side-by-side in Figure 6.5.

At this point, you might be asking yourself: “Why would we ever use a parallel slopes model?”
Looking at the left-hand plot in Figure 6.5, the two lines definitely do not appear to be parallel,
so why would we force them to be parallel? For this data, we agree! It can easily be argued
that the interaction model is more appropriate. However, in the upcoming Section 6.3.1 on

220



3

4

5

30 40 50 60 70
Age

Te
ac

hi
ng

 S
co

re
Interaction model

3

4

5

30 40 50 60 70
Age

gender

female

male

Parallel slopes model

Figure 6.5: Comparison of interaction and parallel slopes models

model selection, we’ll present an example where it can be argued that the case for a parallel
slopes model might be stronger.

6.2.4 Observed/fitted values and residuals

For brevity’s sake, in this section we’ll only compute the observed values, fitted values, and
residuals for the interaction model which we saved in score_model_interaction. You’ll have
an opportunity to study these values for the parallel slopes model in the upcoming Learning
Check.

Say you have a professor who is female and is 36 years old. What fitted value ̂𝑦 = ŝcore would
our model yield? Say you have another professor who is male and is 59 years old. What would
their fitted value ̂𝑦 be?

We answer this question visually first by finding the intersection of the darker-colored regression
line and the vertical line at 𝑥 = age = 36. We mark this value with a large darker-colored dot
in Figure 6.6. Similarly, we can identify the fitted value ̂𝑦 = ŝcore for the male instructor by
finding the intersection of the lighter-colored regression line and the vertical line at 𝑥 = age
= 59. We mark this value with a large lighter-colored dot in Figure 6.6.

What are these two values of ̂𝑦 = ŝcore precisely? We can use the equations of the two
regression lines we computed in Section 6.2.2, which in turn were based on values from the
regression table in Table 6.7:

221



3

4

5

30 40 50 60 70
Age

Te
ac

hi
ng

 S
co

re

gender

female

male

Interaction model

Figure 6.6: Fitted values for two new professors

222



• For all female instructors: ̂𝑦 = ŝcore = 4.883 − 0.018 ⋅ age
• For all male instructors: ̂𝑦 = ŝcore = 4.437 − 0.004 ⋅ age

So our fitted values would be: 4.883 - 0.018 ⋅ 36 = 4.25 and 4.437 - 0.004 ⋅ 59 = 4.20 respec-
tively.

Now what if we want the fitted values not just for the instructors of these two courses, but for
the instructors of all 463 courses included in the evals_ch6 data frame? Doing this by hand
would be long and tedious! This is where our data wrangling code from Section 5.1.3 can help:
it will quickly automate this for all 463 courses. We present a preview of just the first 10 rows
out of 463 in Table 6.11.

score_model_interaction_data <- evals_ch6 %>%
select(score, age, gender) %>%
mutate(score_hat = fitted(score_model_interaction),

residual = residuals(score_model_interaction)) %>%
rownames_to_column("ID")

score_model_interaction_data

Table 6.11: Regression points (First 10 out of 463 courses)

Table 6.11: Regression points (First 10 out of 463 courses)

ID score age gender score_hat residual
1 4.7 36 female 4.25 0.448
2 4.1 36 female 4.25 -0.152
3 3.9 36 female 4.25 -0.352
4 4.8 36 female 4.25 0.548
5 4.6 59 male 4.20 0.399
6 4.3 59 male 4.20 0.099
7 2.8 59 male 4.20 -1.401
8 4.1 51 male 4.23 -0.133
9 3.4 51 male 4.23 -0.833
10 4.5 40 female 4.18 0.318

In fact, it turns out that the female instructor of age 36 taught the first four courses, while the
male instructor taught the next 3. The resulting ̂𝑦 = ŝcore fitted values are in the score_hat
column. The residuals 𝑦 − ̂𝑦 are displayed in the residuals column. Notice for example the
first and fourth courses the female instructor of age 36 taught had positive residuals, indicating
that the actual teaching score they received from students was more than their fitted score
of 4.25. On the other hand, the second and third course this instructor taught had negative

223



residuals, indicating that the actual teaching score they received from students was less than
their fitted score of 4.25.

� Learning Check 6.5

(LC6.6) Compute the observed values, fitted values, and residuals not for the inter-
action model as we just did, but rather for the parallel slopes model we saved in
score_model_parallel_slopes.

6.3 Related topics

6.3.1 Model selection

When do we use an interaction model versus a parallel slopes model? Recall in Sections 6.2.2
and -Section 6.2.3 we fit both interaction and parallel slopes models for the outcome variable 𝑦
(teaching score) using a numerical explanatory variable 𝑥1 (age) and a categorical explanatory
variable 𝑥2 (gender). We compared these models in Figure 6.5, which we display again now.

`geom_smooth()` using formula = 'y ~ x'

3

4

5

30 40 50 60 70
Age

Te
ac

hi
ng

 S
co

re

Interaction model

3

4

5

30 40 50 60 70
Age

gender

female

male

Parallel slopes model

Figure 6.7: Previously seen comparison of interaction and parallel slopes models

224



A lot of you might have asked yourselves: “Why would I force the lines to have parallel slopes
(as seen in the right-hand plot) when they clearly have different slopes (as seen in the left-hand
plot).”

The answer lies in a philosophical principle known as “Occam’s Razor.” It states that “all
other things being equal, simpler solutions are more likely to be correct than complex ones.”
When viewed in a modeling framework, Occam’s Razor can be restated as “all other things
being equal, simpler models are to be preferred over complex ones.” In other words, we should
only favor the more complex model if the additional complexity is warranted.

Let’s revisit the equations for the regression line for both the interaction and parallel slopes
model:

Interaction ∶ ̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥)+
𝑏age,male ⋅ age ⋅ 𝟙is male

Parallel slopes ∶ ̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥)

The interaction model is “more complex” in that there is an additional 𝑏age,male ⋅age⋅𝟙is male
element to the equation not present for the parallel slopes model. Or viewed alternatively, the
regression table for the interaction model in Table 6.7 has four rows, whereas the regression
table for the parallel slopes model in Table 6.9 has three rows. The question becomes: “Is
this additional complexity warranted?” In this case, it can be argued that this additional
complexity is warranted, as evidenced by the clear x-shaped pattern of the two regression lines
in the left-hand plot of Figure 6.7.

However, let’s consider an example where the additional complexity might not be warranted.
Let’s consider the MA_schools data which contains 2017 data on Massachusetts public high
schools provided by the Massachusetts Department of Education; read the help file for this
data by running ?MA_schools if you would like more details on this data included in the
moderndive package.

Let’s model the numerical outcome variable 𝑦, average SAT math score for that high school,
as a function of two explanatory variables:

1. A numerical explanatory variable 𝑥1, the percentage of that high school’s student body
that are economically disadvantaged and

2. A categorical explanatory variable 𝑥2, the school size as measured by enrollment: small
(13-341 students), medium (342-541 students), and large (542-4264 students).

Figure 6.8 visualizes both the interaction and parallel slopes models.

Look closely at the left-hand plot of Figure 6.8 corresponding to an interaction model. While
the slopes are indeed different, they do not differ by much. In other words, they are nearly
identical. Now compare the left-hand plot with the right-hand plot corresponding to a parallel
slopes model. The two models don’t appear all that different. Therefore in this case, it can

225



400

500

600

700

0 20 40 60 80
Percent economically disadvantaged

M
at

h 
S

AT
 S

co
re

Interaction model

400

500

600

700

0 20 40 60 80
Percent economically disadvantaged

School size

small

medium

large

Parallel slopes model

Figure 6.8: Comparison of interaction and parallel slopes models for MA schools

be argued that the additional complexity of the interaction model is not warranted. Thus
following Occam’s Razor, we should prefer the “simpler” parallel slopes model.

Let’s explicitly define what “simpler” means in this case. Let’s compare the regression tables
for the interaction and parallel slopes models in Tables 6.12 and -Table 6.13.

model_2_interaction <- lm(average_sat_math ~ perc_disadvan * size,
data = MA_schools)

summary(model_2_interaction)$coefficients

Table 6.12: Interaction model regression table

Table 6.12: Interaction model regression table

Estimate Std. Error t value Pr(>|t|)
(Intercept) 594.327 13.288 44.726 0.000
perc_disadvan -2.932 0.294 -9.961 0.000
sizemedium -17.764 15.827 -1.122 0.263
sizelarge -13.293 13.813 -0.962 0.337
perc_disadvan:sizemedium 0.146 0.371 0.393 0.694
perc_disadvan:sizelarge 0.189 0.323 0.586 0.559

226



model_2_parallel_slopes <- lm(average_sat_math ~ perc_disadvan + size,
data = MA_schools)

summary(model_2_parallel_slopes)$coefficients

Table 6.13: Parallel slopes regression table

Table 6.13: Parallel slopes regression table

Estimate Std. Error t value Pr(>|t|)
(Intercept) 588.19 7.607 77.325 0.000
perc_disadvan -2.78 0.106 -26.120 0.000
sizemedium -11.91 7.535 -1.581 0.115
sizelarge -6.36 6.923 -0.919 0.359

Observe how the regression table for the interaction model has 2 more rows (6 versus 4). This
reflects the additional “complexity” of the interaction model over the parallel slopes model.

Furthermore, note in Table 6.12 how the offsets for the slopes perc_disadvan:sizemedium
being 0.146 and perc_disadvan:sizelarge being 0.189 are small relative to the slope for the
baseline group of small schools. In other words, all three slopes are similarly negative: −2.932
for small schools, −2.786 (= −2.932+0.146) for medium schools, and −2.743 (= −2.932+0.146)
for large schools. These results are suggesting that irrespective of school size, the relationship
between average math SAT scores and the percent of the student body that is economically
disadvantaged is similar and, alas, quite negative.

What you have just performed is a rudimentary model selection: choosing which model fits
data best among a set of candidate models. While the model selection you just performed was
in somewhat qualitative fashion, more statistically rigorous methods exist. If you’re curious,
take a course on multiple regression or statistical/machine learning!

6.3.2 Correlation coefficient

Recall from Table 6.2 that the correlation coefficient between income in thousands of dollars
and credit card debt was 0.464. What if instead we looked at the correlation coefficient
between income and credit card debt, but where income was in dollars and not thousands of
dollars? This can be done by multiplying income by 1000.

credit_ch6 %>%
select(debt, income) %>%
mutate(income = income * 1000) %>%
cor()

227



Table 6.14: Correlation between income (in dollars) and credit card debt

Table 6.14: Correlation between income (in dollars) and credit card debt

debt income
debt 1.000 0.464
income 0.464 1.000

We see it is the same! We say that the correlation coefficient is invariant to linear transfor-
mations! In other words, the correlation between 𝑥 and 𝑦 will be the same as the correlation
between 𝑎 ⋅ 𝑥 + 𝑏 and 𝑦 for any numerical values 𝑎 and 𝑏.

6.3.3 Simpson’s Paradox

Recall in Section 6.1, we saw the two seemingly contradictory results when studying the
relationship between credit card debt and income. On the one hand, the right hand plot of
Figure 6.1 suggested that the relationship between credit card debt and income was positive.
We re-display this plot in Figure 6.9.

On the other hand, the multiple regression table in Table 6.3 suggested that the relationship
between debt and income was negative. We re-display this table in Table 6.15.

Table 6.15: Multiple regression table

Table 6.15: Multiple regression table

term estimate std_error statistic p_value lower_ci upper_ci
intercept -385.179 19.465 -19.8 0 -423.446 -346.912
credit_limit 0.264 0.006 45.0 0 0.253 0.276
income -7.663 0.385 -19.9 0 -8.420 -6.906

Observe how the slope for income is -7.663 and, most importantly for now, it is negative. This
contradicts our observation in Figure 6.9 that the relationship is positive. How can this be?
Recall the interpretation of the slope for income in the context of a multiple regression model:
taking into account all the other explanatory variables in our model, for every increase of one
unit in income (i.e. $1000), there is an associated decrease of on average $7.663 in debt.

In other words, while in isolation the relationship between debt and income may be positive,
when taking into account credit limit as well, this relationship becomes negative. These seem-
ingly paradoxical results are due to a phenomenon aptly named Simpson’s Paradox. Simpson’s

228

https://en.wikipedia.org/wiki/Simpson%27s_paradox


0

500

1000

1500

2000

50 100 150
Income (in $1000)

Debt and income

Figure 6.9: Relationship between credit card debt and income.

229



Paradox occurs when trends that exist for the data in aggregate either disappear or reverse
when the data are broken down into groups.

Let’s show how Simpson’s Paradox manifests itself in the credit_ch6 data. Let’s first visu-
alize the distribution of the numerical explanatory variable credit limit with a histogram in
Figure 6.10.

0

10

20

30

40

0 5000 10000
Credit limit

co
un

t

Credit limit and 4 credit limit brackets.

Figure 6.10: Histogram of credit limits and brackets.

The vertical dashed lines are the quartiles that cut up the variable credit limit into four equally-
sized groups. Let’s think of these quartiles as converting our numerical variable credit limit
into a categorical variable “credit limit bracket” with four levels. This means

1. 25% of credit limits were between $0 and $3088. Let’s assign these 100 people to the
“low” credit limit bracket.

2. 25% of credit limits were between $3088 and $4622. Let’s assign these 100 people to the
“medium-low” credit limit bracket.

3. 25% of credit limits were between $4622 and $5873. Let’s assign these 100 people to the
“medium-high” credit limit bracket.

4. 25% of credit limits were over $5873. Let’s assign these 100 people to the “high” credit
limit bracket.

230



Now in Figure 6.11 let’s re-display two versions of the scatterplot of debt and income from
Figure 6.9, but with a slight twist:

1. The left-hand plot shows the regular scatterplot and the single regression line, just as
you saw previously.

2. The right-hand plot shows the colored scatterplot, where the color aesthetic is mapped
to “credit limit bracket.” Furthermore, there are now four separate regression lines.

3. In other words, the location of the 400 points are the same in both scatterplots, but the
right-hand plot shows an additional variable of information: credit limit bracket.

0

500

1000

1500

2000

50 100 150
Income (in $1000)

C
re

di
t c

ar
d 

de
bt

 (
in

 $
)

0

500

1000

1500

2000

50 100 150
Income (in $1000)

Credit limit
bracket

low

med−low

med−high

high

Two scatterplots of credit card debt vs income

Figure 6.11: Relationship between credit card debt and income by credit limit bracket

The left-hand plot of Figure 6.11 focuses on the relationship between debt and income in
aggregate. It is suggesting that overall there exists a positive relationship between debt and
income. However, the right-hand plot of Figure 6.11 focuses on the relationship between debt
and income broken down by credit limit bracket. In other words, we focus on four separate
relationships between debt and income: one for the “low” credit limit bracket, one for the
“medium-low” credit limit bracket, and so on.

Observe in the right-hand plot that the relationship between debt and income is clearly neg-
ative for the “medium-low” and “medium-high” credit limit brackets, while the relationship
is somewhat flat for the “low” credit limit bracket. The only credit limit bracket where the

231



relationship remains positive is for the “high” credit limit bracket. However, this relationship
is less positive than in the relationship in aggregate, since the slope is shallower than the slope
of the regression line in the left-hand plot.

In this example of Simpson’s Paradox, the credit limit is a confounding variable of the rela-
tionship between credit card debt and income as we defined in Section 5.3.2. Thus, the credit
limit needs to be accounted for in any appropriate model for the relationship between debt
and income.

6.4 Conclusion

6.4.1 What’s to come?

Congratulations! We’ve completed the “Data modeling” portion of this book. We’re ready
to proceed to the next part of the book: “Statistical Theory.” These chapters will lay the
foundation for key ideas in statistics such as randomization (Chapter 7), populations and
samples (Chapter 8), and sampling distributions (Chapter 9).

In Parts I and II of the book, we’ve been focusing only on exploratory data analysis and
exploring relationships that exist in our observed dataset. Once we’ve established some of the
statistical theory in Part III, we will be able to move beyond exploratory data analysis and
into “statistical inference” in Part IV, where we will learn how (and when it is appropirate) to
make inferences about statistical relationships in a population beyond our dataset.

6.5 Exercises

6.5.1 Conceptual

Exercise 6.1. In modeling a numerical and a categorical variable, the parallel slopes model
and the interaction model are very similar. Which type of model should you choose?

a) Simple linear regression model. Since the two models are similar, we don’t need both
the categorical variable and the numerical variable.

b) The interaction model. Since the two models are very similar, the additional complexity
of the parallel slopes model isn’t necessary

c) The parallel slopes model. Since two models are very similar, the additional complexity
of the interaction model isn’t necessary

d) The interaction model. Since two models are very similar, the offsets of the slopes are
rather large so the interaction model fits best.

e) The parallel slopes model. Since two models are very similar, the offsets of the slopes
are rather large so the parallel slopes model fits best.

232



Exercise 6.2. The correlation between variable 𝑦 and variable 𝑧 is 0.47. Consider variable h
where ℎ = 6.4𝑦 − 2.1. What is the correlation between variables ℎ and 𝑧?

a) -0.89
b) 0.23
c) 6.4
d) 0.47
e) -2.1
f) none of the above

Exercise 6.3. An interaction effect exists if the associated effect of one variable is independent
of the value of another variable.

a) True
b) False

Exercise 6.4. An example of simpson’s paradox is when you see a trend in several separate
groups of data, but when you combine these groups, the trend changes or disappears.

a) True
b) False

Exercise 6.5. Why does Simpson’s Paradox occur? Select all that apply.

a) Splitting up your data can result in unequal balance in representation of some groups
compared to others.

b) Splitting up your data always results in Simpson’s Paradox.
c) Simpson’s Paradox is the result of data aggregation and develops new trends when groups

are combined in the correct manner.
d) Splitting up your data by a confounding variable can allow you to see trends in the data

that were hidden in the aggregated version of the data.

6.5.2 Application

The application exercises use datasets from the ISDSdatasets package.

Exercise 6.6. Using the covid_states dataset, predict new_confirmed using new_recovered
and new_deceased.

Exercise 6.7. Using the covid_states and the covid_dem datasets, predict new_confirmed
using population and new_tested.

233



Exercise 6.8. Consider the nba dataset. It is known that teams tend to play better on their
home courts, so the variable location is likely useful in predicting total points scored by a
team (pts_tm). Additionally we assume that the number of points scored by the star player
(pts) likely impacts the team’s total points scored.

Use a parallel slopes model to predict the total points scored by the team using location and
pts. Plot the resulting model and interpret the coefficients.

Exercise 6.9. Using the same variables from Exercise 6.8, this time fit an interaction model
to predict the total points scored by the team. Plot the resulting model and interpret the
coefficients.

6.5.3 Advanced

Exercise 6.10. A lot of times analysts will compare model performance using what is called
the “mean squared error” (MSE). This is calculated by first squaring each residual, then take
the mean of those squared residuals. The model with the lower MSE is generally considered
“better”.

Determine if the model in Exercise 6.8 or Exercise 6.9 is better using the MSE as the evaluation
criteria.

Exercise 6.11. Using any two variables from the nba dataset, build a model to predict pts_tm
that has a better MSE than the ones reported in Exercise 6.8.

234



Part IV

Statistical Theory

235



7 Randomization and Causality

In this chapter we kick off the third segment of this book: statistical theory. Up until this
point, we have focused only on descriptive statistics and exploring the data we have in hand.
Very often the data available to us is observational data – data that is collected via a survey
in which nothing is manipulated or via a log of data (e.g., scraped from the web). As a result,
any relationship we observe is limited to our specific sample of data, and the relationships are
considered associational. In this chapter we introduce the idea of making inferences through
a discussion of causality and randomization.

Needed Packages

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)

7.1 Causal Questions

What if we wanted to understand not just if X is associated with Y, but if X causes Y?
Examples of causal questions include:

• Does smoking cause cancer?
• Do after school programs improve student test scores?
• Does exercise make people happier?
• Does exposure to abstinence only education lead to lower pregnancy rates?
• Does breastfeeding increase baby IQs?

Importantly, note that while these are all causal questions, they do not all directly use the
word cause. Other words that imply causality include:

• Improve
• Increase / decrease
• Lead to
• Make

236



In general, the tell-tale sign that a question is causal is if the analysis is used to make an
argument for changing a procedure, policy, or practice.

7.2 Randomized experiments

The gold standard for understanding causality is the randomized experiment. For the sake
of this chapter, we will focus on experiments in which people are randomized to one of two
conditions: treatment or control. Note, however, that this is just one scenario; for example,
schools, offices, countries, states, households, animals, cars, etc. can all be randomized as well,
and can be randomized to more than two conditions.

What do we mean by random? Be careful here, as the word “random” is used colloquially
differently than it is statistically. When we use the word random in this context, we mean:

• Every person (or unit) has some chance (i.e., a non-zero probability) of being selected
into the treatment or control group.

• The selection is based upon a random process (e.g., names out of a hat, a random
number generator, rolls of dice, etc.)

In practice, a randomized experiment involves several steps.

1. Half of the sample of people is randomly assigned to the treatment group (T), and the
other half is assigned to the control group (C).

2. Those in the treatment group receive a treatment (e.g., a drug) and those in the control
group receive something else (e.g., business as usual, a placebo).

3. Outcomes (Y) in the two groups are observed for all people.
4. The effect of the treatment is calculated using a simple regression model,

̂𝑦 = 𝑏0 + 𝑏1𝑇

where 𝑇 equals 1 when the individual is in the treatment group and 0 when they are in
the control group. Note that using the notation introduced in Section 5.2.2, this would
be the same as writing ̂𝑦 = 𝑏0 + 𝑏1𝟙Trt(𝑥). We will stick with the 𝑇 notation for now,
because this is more common in randomized experiments in practice.

For this simple regression model, 𝑏1 = ̄𝑦𝑇 − ̄𝑦𝐶 is the observed “treatment effect”, where ̄𝑦𝑇
is the average of the outcomes in the treatment group and ̄𝑦𝐶 is the average in the control
group. This means that the “treatment effect” is simply the difference between the treatment
and control group averages.

237



7.2.1 Random processes in R

There are several functions in R that mimic random processes. You have already seen one
example in Chapters 5 and 6 when we used sample_n to randomly select a specifized number
of rows from a dataset. The function rbernoulli() is another example, which allows us to
mimic the results of a series of random coin flips. The first argument in the rbernoulli()
function, n, specifies the number of trials (in this case, coin flips), and the argument p specifies
the probability of “success”” for each trial. In our coin flip example, we can define “success”
to be when the coin lands on heads. If we’re using a fair coin then the probability it lands on
heads is 50%, so p = 0.5.

Sometimes a random process can give results that don’t look random. For example, even
though any given coin flip has a 50% chance of landing on heads, it’s possible to observe many
tails in a row, just due to chance. In the example below, 10 coin flips resulted in only 3 heads,
and the first 7 flips were tails. Note that TRUE corresponds to the notion of “success”, so
here TRUE = heads and FALSE = tails.

coin_flips <- rbernoulli(n = 10, p = 0.5)
coin_flips

[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE

Importantly, just because the results don’t look random, does not mean that the results aren’t
random. If we were to repeat this random process, we will get a different set of random
results.

coin_flips2 <- rbernoulli(n = 10, p = 0.5)
coin_flips2

[1] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

Random processes can appear unstable, particularly if they are done only a small number of
times (e.g. only 10 coin flips), but if we were to conduct the coin flip procedure thousands of
times, we would expect the results to stabilize and see on average 50% heads.

coin_flips3 <- rbernoulli(n = 100000, p = 0.5)
coin_flips3 %>%
as_tibble() %>%
count(value) %>%
mutate(percent = 100 * n/sum(n))

238



# A tibble: 2 x 3
value n percent
<lgl> <int> <dbl>

1 FALSE 49879 49.9
2 TRUE 50121 50.1

Often times when running a randomized experiment in practice, you want to ensure that
exactly half of your participants end up in the treatment group. In this case, you don’t want
to flip a coin for each participant, because just by chance, you could end up with 63% of people
in the treatment group, for example. Instead, you can imagine each participant having an ID
number, which is then randomly sorted or shuffled. You could then assign the first half of
the randomly sorted ID numbers to the treatment group, for example. R has many ways of
mimicing this type of random assignment process as well, such as the randomizr package.

7.3 Omitted variables

In a randomized experiment, we showed in Section 7.2 that we can calculate the estimated
causal effect (𝑏1) of a treatment using a simple regression model.

Why can’t we use the same model to determine causality with observational data? Recall our
discussion from Section 5.3.2. We have to be very careful not to make unwarranted causal
claims from observational data, because there may be an omitted variable (Z), also known
as a confounder:

Here are some examples:

• There is a positive relationship between sales of ice cream (X) from street vendors and
crime (Y). Does this mean that eating ice cream causes increased crime? No. The omitted
variable is the season and weather (Z). That is, there is a positive relationship between
warm weather (Z) and ice cream consumption (X) and between warm weather (Z) and
crime (Y).

239



• Students that play an instrument (X) have higher grades (Y) than those that do
not. Does this mean that playing an instrument causes improved academic outcomes?
No. Some omitted variables here could be family socio-economic status and student
motivation. That is, there is a positive relationship between student motivation (and
a family with resources) (Z) and likelihood of playing an instrument (X) and between
motivation / resources and student grades (Y).

• Countries that eat a lot of chocolate (X) also win the most Nobel Prizes (Y). Does this
mean that higher chocolate consumption leads to more Nobel Prizes? No. The omitted
variable here is a country’s wealth (Z). Wealthier countries win more Nobel Prizes and
also consume more chocolate.

Examples of associations that are misinterpreted as causal relationships abound. To see more
examples, check out this website: https://www.tylervigen.com/spurious-correlations.

7.4 The magic of randomization

If omitted variables / confounders are such a threat to determining causality in observational
data, why aren’t they also a threat in randomized experiments?

The answer is simple: randomization. Because people are randomized to treatment and
control groups, on average there is no difference between these two groups on any characteristics
other than their treatment.

This means that before the treatment is given, on average the two groups (T and C) are equiv-
alent to one another on every observed and unobserved variable. For example, the two groups
should be similar in all pre-treatment variables: age, gender, motivation levels, heart dis-
ease, math ability, etc. Thus, when the treatment is assigned and implemented, any differences
between outcomes can be attributed to the treatment.

7.4.1 Randomization Example

Let’s see the magic of randomization in action. Imagine that we have a promising new curricu-
lum for teaching math to Kindergarteners, and we want to know whether or not the curriculum
is effective. Let’s explore how a randomized experiment would help us test this. First, we’ll
load in a dataset called ed_data. This data originally came from the Early Childhood Longi-
tudinal Study (ECLS) program but has been adapted for this example. Let’s take a look at
the data.

ed_data <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTQ9AvbzZ2DBIRmh5h_NJLpC_b4u8-bwTeeMxwSbGX22eBkKDt7JWMqnuBpAVad6-OXteFcjBY4dGqf/pub?gid=300215043&single=true&output=csv")

glimpse(ed_data)

240



Rows: 335
Columns: 10
$ ID <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17~
$ FEMALE <dbl> 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, ~
$ MINORITY <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, ~
$ MOM_ED <chr> "Some college", "Vocational/technical program", "Some col~
$ DAD_ED <chr> "Vocational/technical program", "Some college", "Bachelor~
$ SES_CONT <dbl> -0.27, -0.03, 0.48, -0.03, -0.66, 1.53, 0.20, 0.07, -0.32~
$ READ_pre <dbl> 27.4, 32.5, 48.2, 43.9, 36.1, 95.8, 33.8, 33.1, 32.2, 44.~
$ MATH_pre <dbl> 18.7, 30.6, 31.6, 31.4, 24.2, 49.8, 27.1, 27.4, 25.1, 41.~
$ Trt_rand <dbl> 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, ~
$ Trt_non_rand <dbl> 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, ~

It includes information on 335 Kindergarten students: indicator variables for whether they
are female or minority students, information on their parents’ highest level of education, a
continuous measure of the their socio-economic status (SES), and their reading and math
scores. For our purposes, we will assume that these are all pre-treatment variables that
are measured on students at the beginning of the year, before we conduct our (hypothetical)
randomized experiment. We also have included two variables Trt_rand and Trt_non_rand for
demonstration purposes, which we will describe below.

In order to conduct our randomized experiment, we could randomly assign half of the Kinder-
garteners to the treatment group to recieve the new curriculum, and the other half of the
students to the control group to recieve the “business as usual” curriculum. Trt_rand is the
result of this random assignment, and is an indicator variable for whether the student is in
the treatment group (Trt_rand == 1) or the control group (Trt_rand == 0). By inspecting
this variable, we can see that 167 students were assigned to treatment and 168 were assigned
to control.

ed_data %>%
count(Trt_rand)

# A tibble: 2 x 2
Trt_rand n

<dbl> <int>
1 0 168
2 1 167

Remember that because this treatment assignment was random, we don’t expect a student’s
treatment status to be correlated with any of their other pre-treatment characteristics. In
other words, students in the treatment and control groups should look approximately the
same on average. Looking at the means of all the numeric variables by treatment group, we

241



can see that this is true in our example. Note how the summarise_if function is working here;
if a variable in the dataset is numeric, then it is summarized by calculating its mean.

ed_data %>%
group_by(Trt_rand) %>%
summarise_if(is.numeric, mean) %>%
select(-c(ID, Trt_non_rand))

# A tibble: 2 x 6
Trt_rand FEMALE MINORITY SES_CONT READ_pre MATH_pre

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 0.542 0.327 0.296 46.8 39.0
2 1 0.569 0.293 0.320 48.2 39.9

Both the treatment and control groups appear to be approximately the same on average on
the observed characteristics of gender, minority status, SES, and pre-treatment reading and
math scores. Note that since FEMALE is coded as 0 - 1, the “mean” is simply the proportion of
students in the dataset that are female. The same is true for MINORITY.

In our hypothetical randomized experiment, after randomizing students into the treatment
and control groups, we would then implement the appropriate (new or business as usual)
math curriculum throughout the school year. We would then measure student math scores
again at the end of the year, and if we observed that the treatment group was scoring higher
(or lower) on average than the control group, we could attribute that difference entirely to
the new curriculum. We would not have to worry about other omitted variables being the
cause of the difference in test scores, because randomization ensured that the two groups were
equivalent on average on all pre-treatment characteristics, both observed and unobserved.

In comparison, in an observational study, the two groups are not equivalent on these pre-
treatment variables. In the same example above, let us imagine where instead of being
randomly assigned to treatment, instead students with lower SES are assigned to the new
specialized curriculum (Trt_non_rand = 1), and those with higher SES are assigned to the
business as usual curriculum (Trt_non_rand = 0). The indicator variable Trt_non_rand is
the result of this non-random treatment group assignment process.

In this case, the table of comparisons between the two groups looks quite different:

ed_data %>%
group_by(Trt_non_rand) %>%
summarise_if(is.numeric, mean) %>%
select(-c(ID, Trt_rand))

242



# A tibble: 2 x 6
Trt_non_rand FEMALE MINORITY SES_CONT READ_pre MATH_pre

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 0.565 0.226 0.912 51.7 43.6
2 1 0.545 0.395 -0.300 43.3 35.3

There are somewhat large differences between the treatment and control group on several pre-
treatment variables in addition to SES (e.g. % minority, and reading and math scores). Notice
that the two groups still appear to be balanced in terms of gender. This is because gender is in
general not associated with SES. However, minority status and test scores are both correlated
with SES, so assigning treatment based on SES (instead of via a random process) results in
an imbalance on those other pre-treatment variables. Therefore, if we observed differences in
test scores at the end of the year, it would be difficult to disambiguate whether the differences
were caused by the intervention or due to some of these other pre-treatment differences.

7.4.2 Estimating the treatment effect

Imagine that the truth about this new curriculum is that it raises student math scores by 10
points, on average. We can use R to mimic this process and randomly generate post-test scores
that raise the treatment group’s math scores by 10 points on average, but leave the control
group math scores largely unchanged. Note that we will never know the true treatment effect
in real life - the treatment effect is what we’re trying to estimate; this is for demonstration
purposes only.

We use another random process function in R, rnorm() to generate these random post-test
scores. Don’t worry about understanding exactly how the code below works, just note that in
both the Trt_rand and Trt_non_rand case, we are creating post-treatment math scores that
increase a student’s score by 10 points on average, if they received the new curriculum.

ed_data <- ed_data %>%
mutate(MATH_post_trt_rand =

case_when(Trt_rand == 1 ~ MATH_pre + rnorm(1, 10, 2),
Trt_rand == 0 ~ MATH_pre + rnorm(1, 0, 2)),

MATH_post_trt_non_rand =
case_when(Trt_non_rand == 1 ~ MATH_pre + rnorm(1, 10, 2),

Trt_non_rand == 0 ~ MATH_pre + rnorm(1, 0, 2)))

By looking at the first 10 rows of this data in Table 7.1, we can convince ourselves that
both the MATH_post_trt_rand and MATH_post_trt_non_rand scores reflect this truth that
the treatment raises test scores by 10 points, on average. For example, we see that for student
1, they were assigned to the treatment group in both scenarios and their test scores increased
from about 18 to about 28. Student 2, however, was only assigned to treatment in the second

243



scenario, and their test scores increased from about 31 to 41, but in the first scenario since
they did not receive the treatment, their score stayed at about 31. Remember that here we
are showing two hypothetical scenarios that could have occurred for these students - one if
they were part of a randomized experiment and one where they were part of an observational
study - but in real life, the study would only be conducted one way on the students and not
both.

ed_data %>%
select(ID, MATH_pre, Trt_rand,

MATH_post_trt_rand, Trt_non_rand,
MATH_post_trt_non_rand) %>%

filter(ID <= 10)

Table 7.1: Math scores for first 10 students, under random and non-random treatment assign-
ment scenarios

Table 7.1: Math scores for first 10 students, under random and non-random treatment assign-
ment scenarios

ID MATH_preTrt_rand MATH_post_trt_randTrt_non_rand MATH_post_trt_non_rand
1 18.7 1 28.4 1 28.9
2 30.6 0 31.2 1 40.8
3 31.6 0 32.2 0 31.3
4 31.4 0 32.0 1 41.6
5 24.2 1 34.0 1 34.4
6 49.8 1 59.5 0 49.5
7 27.1 0 27.7 1 37.3
8 27.4 0 27.9 1 37.5
9 25.1 1 34.9 1 35.3

10 41.9 1 51.6 0 41.6

Let’s examine how students in each group performed on the post-treatment math assessment
on average in the first scenario where they were randomly assigned (i.e. using Trt_rand and
MATH_post_trt_rand).

ed_data %>%
group_by(Trt_rand) %>%
summarise(post_trt_rand_avg = mean(MATH_post_trt_rand))

# A tibble: 2 x 2
Trt_rand post_trt_rand_avg

244



<dbl> <dbl>
1 0 39.6
2 1 49.6

Remember that in a randomized experiment, we calculate the treatment effect by simply
taking the difference in the group averages (i.e. ̄𝑦𝑇 − ̄𝑦𝐶), so here our estimated treatment
effect is 49.6 − 39.6 = 10.0. Recall that we said this could be estimated using the simple
linear regression model ̂𝑦 = 𝑏0 + 𝑏1𝑇 . We can fit this model in R to verify that our estimated
treatment effect is 𝑏1 = 10.0.

fit <- lm(MATH_post_trt_rand ~ Trt_rand, data = ed_data)
fit

Call:
lm(formula = MATH_post_trt_rand ~ Trt_rand, data = ed_data)

Coefficients:
(Intercept) Trt_rand

39.6 10.0

Let’s also look at the post-treatment test scores by group for the non-randomized experiment
case.

ed_data %>%
group_by(Trt_non_rand) %>%
summarise(post_trt_non_rand_avg = mean(MATH_post_trt_non_rand))

# A tibble: 2 x 2
Trt_non_rand post_trt_non_rand_avg

<dbl> <dbl>
1 0 43.3
2 1 45.5

fit1_non_rand <- lm(MATH_post_trt_non_rand ~ Trt_non_rand, data = ed_data)
summary(fit1_non_rand)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.31 0.871 49.69 4.37e-156
Trt_non_rand 2.18 1.234 1.76 7.89e-02

245



Note that even though the treatment raised student scores by 10 points on average, in the
observational case we estimate the treatment effect is much smaller. This is because treatment
was confounded with SES and other pre-treatment variables, so we could not obtain an accurate
estimate of the treatment effect.

7.5 If you know Z, what about multiple regression?

In the previous sections, we made clear that you cannot calculate the causal effect of a treat-
ment using a simple linear regression model unless you have random assignment. What about
a multiple regression model?

The answer here is more complicated. We’ll give you an overview, but note that this is a
tiny sliver of an introduction and that there is an entire field of methods devoted to this
problem. The field is called causal inference methods and focuses on the conditions under
and methods in which you can calculate causal effects in observational studies.

Recall, we said before that in an observational study, the reason you can’t attribute causality
between X and Y is because the relationship is confounded by an omitted variable Z. What
if we included Z in the model (making it no longer omitted), as in:

̂𝑦 = 𝑏0 + 𝑏1𝑇 + 𝑏2𝑍
As we learned in Chapter 6, we can now interpret the coefficient 𝑏1 as the estimated effect
of the treatment on outcomes, holding constant (or adjusting for) Z.

Importantly, the relationship between T and Y, adjusting for Z can be similar or different than
the relationship between T and Y alone. In advance, you simply cannot know one from the
other.

Let’s again look at our model fit1_non_rand that looked at the relationship between treat-
ment and math scores, and compare it to a model that adjusts for the confounding variable
SES.

fit1_non_rand <- lm(MATH_post_trt_non_rand ~ Trt_non_rand, data = ed_data)
summary(fit1_non_rand)$coefficients
fit2_non_rand <- lm(MATH_post_trt_non_rand ~ Trt_non_rand + SES_CONT, data = ed_data)
summary(fit2_non_rand)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 43.31 0.871 49.69 4.37e-156
Trt_non_rand 2.18 1.234 1.76 7.89e-02

246



Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.22 1.49 25.73 0
Trt_non_rand 8.93 2.02 4.43 0
SES_CONT 5.57 1.34 4.17 0

The two models give quite different indications of how effective the treatment is. In the first
model, the estimate of the treatment effect is 2.176, but in the second model once we control
for SES, the estimate is 8.931. Again, this is because in our non-random assignment scenario,
treatment status was confounded with SES.

Importantly, in the randomized experiment case, controlling for confounders using a multi-
ple regression model is not necessary - again, because of the randomization. Let’s look at
the same two models using the data from the experimental case (i.e. using Trt_rand and
MATH_post_trt_rand).

fit1_rand_exp <- lm(MATH_post_trt_rand ~ Trt_rand, data = ed_data)
summary(fit1_rand_exp)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.6 0.928 42.65 5.46e-137
Trt_rand 10.0 1.314 7.64 2.26e-13

fit2_rand_exp <- lm(MATH_post_trt_rand ~ Trt_rand + SES_CONT, data = ed_data)
summary(fit2_rand_exp)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.68 0.883 42.67 7.98e-137
Trt_rand 9.89 1.205 8.21 5.11e-15
SES_CONT 6.37 0.798 7.98 2.37e-14

We can see that both models give estimates of the treatment effect that are roughly the same
(10.044 and 9.891), regardless of whether or not we control for SES. This is because ran-
domization ensured that the treatment and control group were balanced on all pre-treatment
characteristics - including SES, so there is no need to control for them in a multiple regression
model.

247



7.6 What if you don’t know Z?

In the observational case, if you know the process through which people are assigned to or
select treatment then the above multiple regression approach can get you pretty close to the
causal effect of the treatment on the outcomes. This is what happened in our fit2_non_rand
model above where we knew treatment was determined by SES, and so we controlled for it in
our model.

But this is rarely the case. In most studies, selection of treatment is not based on a single
variable. That is, before treatment occurs, those that will ultimately receive the treatment
and those that do not might differ in a myriad of ways. For example, students that play
instruments may not only come from families with more resources and have higher motivation,
but may also play fewer sports, already be great readers, have a natural proclivity for music,
or come from a musical family. As an analyst, it is typically very difficult – if not impossible
– to know how and why some people selected a treatment and others did not.

Without randomization, here is the best approach:

1. Remember: your goal is to approximate a random experiment. You want the two groups
to be similar on any and all variables that are related to uptake of the treatment and
the outcome.

2. Think about the treatment selection process. Why would people choose to play an
instrument (or not)? Attend an after-school program (or not)? Be part of a sorority or
fraternity (or not)?

3. Look for variables in your data that you can use in a multiple regression to control for
these other possible confounders. Pay attention to how your estimate of the treatment
impact changes as you add these into your model (often it will decrease).

4. State very clearly the assumptions you are making, the variables you have controlled
for, and the possible other variables you were unable to control for. Be tentative in
your conclusions and make clear their limitations – that this work is suggestive and that
future research – a randomized experiment – would be more definitive.

7.7 Conclusion

In this chapter we’ve focused on the role of randomization in our ability to make inferences –
here about causation. As you will see in the next few chapters, randomization is also important
for making inferences from outcomes observed in a sample to their values in a population. But
the importance of randomization goes even deeper than this – one could say that random-
ization is at the core of inferential statistics.

In situations in which treatment is randomly assigned or a sample is randomly selected
from a population, as a result of knowing this mechanism, we are able to imagine and
explore alternative realities – what we will call counter-factual thinking (Chapter 9) – and

248



form ways of understanding when “effects” are likely (or unlikely) to be found simply by chance
– what we will call proof by stochastic contradiction (Chapter 11).

Finally, we would be remiss to end this chapter without including this XKCD comic, which
every statistician loves:

7.8 Exercises

7.8.1 Conceptual

Exercise 7.1. Which of the following are necessary components of a randomized experiment?
Select all that apply.

a) There is a non-zero probability of being selected into the treatment or control group for
every unit

b) Every unit of the population is selected into the treatment or control group
c) A random process is used for selection
d) A random process is used for understanding the results
e) A random process is used for administration of the treatments

Exercise 7.2. You are interested in determining how often a 4-sided die (with sides numbered
1-4) rolls the number 2. Which of the following lines of code could you use to simulate 1000
rolls for this experiment?

a) 1000*rbernoulli(n = 1, p = 0.25)
b) rep( rbernoulli(n = 1, p = 0.25), 1000)
c) rbernoulli(n = 0.25, p = 2)
d) rbernoulli(n = 1000, p = 0.25)
e) rbernoulli(n = 1000, p = 2)
f) rbernoulli(n = 1000, p = 1/6)

Exercise 7.3. The more times the random procedure is conducted, the further our experi-
mental probability diverges from the true probability.

249



a) True
b) False

Exercise 7.4. Randomization allows you to determine causation because the treatment and
control groups do not differ by any pre-treatment variables.

a) True
b) False

Exercise 7.5. In most real life studies, selection of treatment is not based on a single variable.
Which of the following are components of the best approach in this case?

a) Try to ensure that treatment and control groups are as similar as possible on all variables
related to treatment assignment

b) Add additional treatment variables to ensure further randomization
c) Look for variables you can use to control for confounding
d) State your assumptions and limitations

Exercise 7.6. Consider the following headline: “Students at private colleges have higher
GPAs”. What conclusions can you infer?

a) private colleges causes higher GPAs, because this would be an observational study
b) private colleges are only correlated with higher GPAs, because this would be an obser-

vational study
c) private colleges causes higher GPAs, because this would be a randomized experiment
d) private colleges are only correlated with higher GPAs, because this would be a random-

ized experiment

Exercise 7.7. Consider the following headline: “Video games cause violent behavior”. What
conclusions can you infer?

a) video games cause violent behavior, because this would be an observational study
b) video games are only correlated with violent behavior, because this would be an obser-

vational study
c) video games cause violent behavior, because this would be a randomized experiment
d) video games are only correlated with violent behavior, because this would be a random-

ized experiment

Exercise 7.8. Name a potential confounding variable for Exercise 7.6. Name a potential
confounding variable for Exercise 7.7.

250



Exercise 7.9. You are designing an experiment where you provide the eastern half of a city
with recommendations to decrease water consumption (treatment group), with the aim of
determining the effectiveness of these recommendations. The western half of the city does
not receive water consumption recommendations (control group). Would we expect that, on
average, the pre-treatment characteristics are the same between the treatment and control
groups?

a) Yes, because we have no reason to believe that different halves of the city differ
b) Yes, because the treatment itself is very mild
c) No, because we are not looking at characteristics other than water consumption
d) No, because the treatment and control groups were not randomized

Exercise 7.10. A doctor is curious if a new drug he has just learned about is effective in
improving symptoms for patients with illness A. To determine the effectiveness of this drug, the
doctor randomizes his patients and prescribes half of these patients with the drug of interest,
while leaving the other half to continue with existing methods. Simultaneously, however,
the physical therapist for all the doctor’s patients is running his own study where he too
randomized the doctor’s patients (independently of the doctor’s study) and prescribed half of
the patients to a new pain relief therapy program.

In the context of the doctor’s study on the drug, the new pain relief therapy program is what
type of variable?

7.8.2 Application

Exercise 7.11. Consider the following scenario:

At a large high school, the administrative personnel want to start an after school program for
mathematics help for students. To determine if the program is effective, the administration
asks all the math teachers at the school to provide recommendations of which students they
believe would benefit from the program, and randomly selects 200 of these students. The
trial mathematics program is implemented for the duration of the spring semester, and the
administrative personnel consider the outcome to be the change in student’s percentile math
score from the fall semester final to the spring semester final.

Based on the setup of this design, can the administrative personnel conclude that the after
school program caused students to improve in mathematics? Discuss whether or not random-
ization was achieved and any limitations of the study.

Exercise 7.12. Consider the following scenario:

You are working for a potato chip company, and are tasked with designing an experiment
to determine if potential customers across the US are more receptive to a more complicated
graphic on the product compared to the original simple graphic. Due to production and

251



shipping issues, however, the product with the original graphic can only be distributed on
the Eastern half of the US and the product with the more complicated graphic can only be
distributed on the Western half of the US.

How and why might the confounding variable geography impact your results and conclusions?
Can you brainstorm any ways to reduce the impact of this confounding variable?

7.8.3 Advanced

Exercise 7.13. A new study is published claiming that patients are more receptive to rehabil-
itation of spinal injuries if one wall in the treatment room is painted purple. The hospital you
work for is fascinated by the study and wants to implement the study in their own location,
but the study provides no empirical evidence of the effectiveness of the treatment.

You are tasked with designing a (randomized) experiment to determine the validity of this
claim. Design a study and discuss the limitations of your study.

252



8 Populations and Generalizability

In this chapter we will continue our discussion of statistical theory, by learning about samples
and populations. Until now, this book has focused on how to analyze data in a sample. In
many instances, your goal is not to understand insights and trends in the sample but instead
to make inferences from such insights and trends observed to trends in a larger population.
This chapter provides a broad overview of the concepts of samples and populations and the
links between them. In Chapter 9 we will provide a more theoretical connection between these
two based on the theory of repeated samples and properties of sampling distributions.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(skimr)
library(ggplot2movies)

8.1 Terminology & Notation

In Parts I and II of this book, you were provided with sample data, methods for exploring this
data visually, and methods for summarizing trends in this data. These methods are what we
call descriptive statistics, as they are focused on describing the observed sample.

In science and policy, the goal of analysis is typically not just to understand trends in a sample
but instead to make inferences from this sample to trends in a population. For example, in
order to understand the relationship between party affiliation and voting, you might conduct
a poll in a sample of 100 (or 1,000) voters by mail, phone-call, or by stopping them on the
street. Or, in order to determine if a new drug effectively reduces high blood pressure, you
might conduct a randomized experiment in a sample of 200 patients experiencing high blood
pressure.

Why not use population data instead? While a census of every person (or unit) in a population
would be ideal, it’s not hard to see that doing so is costly in many regards — financially and
in terms of time and personnel.

253



In order to understand the relationship between samples and populations, we begin by provid-
ing some vocabulary and notation that we will use throughout the remainder of the book.

1. Population: A population is a collection of individuals or units about which we are
interested. We mathematically denote the population’s size (i.e. the total number of
individuals or units) using upper-case 𝑁 .

2. Sample: A sample is a collection of individuals or units from a population. These are
the individuals or units about which we have (or will collect) data. We mathematically
denote the sample’s size, the number of people or units we have (or will collect) data on,
using lower-case 𝑛.

3. Population parameter: A population parameter is a numerical value that summarizes
the population. In almost all cases the population parameter is unknown, but we wish
to know it. Population parameters are typically denoted mathematically using Greek
letters. For example, you may want to know the population mean, which is typically
written as 𝜇 (pronounced “mu”). Or, you might want to know the population proportion,
which is typically written as 𝜋 (pronounced “pi”). Population size, 𝑁 , is a case where
we do not follow the Greek letter convention to denote a population parameter.

4. Sample statistic / estimate : A sample statistic is a numerical value that summarizes
the sample and can be used to estimate an unknown population parameter. It is common
for a sample statistic to sometimes be called an estimate or point estimate. These
are sometimes denoted mathematically using Roman letters (that correspond to Greek
letters) or via inclusion of a “hat” above the population parameter (called hat-notation).
For example, the population proportion 𝜋 can be estimated using a sample proportion
which is denoted with ̂𝜋 or 𝑝. The population mean 𝜇 can be estimated using the sample
mean which is denoted ̂𝜇 or 𝑥. Obviously 𝑥 doesn’t follow either the Greek letter or
hat-notation conventions, but it is the standard notation for the sample mean.

5. Census: A census is an exhaustive collection of a measurement on all 𝑁 individuals or
units in the population in order to compute the exact value of a population parameter
for the given measure.

6. Random sampling: Random sampling is the act of using a random procedure to select
individuals or units from a population that we will collect measurements on. Random
sampling is extremely useful when we don’t have the means to perform a census. Here
“random” means that every individual or unit in the population has a chance of being
selected and that the process of selection is uncorrelated with the data itself. For example,
a random procedure might involve rolling dice, selecting slips of paper out of a hat, or
using a random number generator.

The first two of these definitions makes clear that the data you have in hand (sample) is being
used to make inferences to a larger set of data you don’t have (population). Definitions 3
and 4 refine these further, focusing on the specific numbers you wish you knew (population
parameter) and the ones you are able to calculate using your data (estimate / sample statistic).

254



Definitions 5 and 6 refer to how a sample is related to a population — either they are the
same (census) or the mechanism through which they are related needs to be clear (random
sampling).

The goal is to use data in the sample to make inferences to a value in the population.
The act of “inferring” is to deduce or conclude (information) from evidence and reasoning.
Statistical inference is the theory, methods, and practice of forming judgments about the
parameters of a population and the reliability of statistical relationships, typically on the basis
of random sampling (Wikipedia). In other words, statistical inference is the act of inference
via sampling.

Table 8.1 gives some common population parameters we might be interested in and their
corresponding estimators that we use to calculate estimates from our sample data. Note that
we have used many of these estimators in Parts I and II of the book when we calculated
summary statistics to describe our data (e.g. mean, standard deviation, correlation, regression
coefficients). The next few chapters will help establish the statistical theory and conditions
under which we can use these estimators to infer things about their corresponding population
parameters.

Table 8.1: Population Parameters and Sample Statistics

Table 8.1: Population Parameters and Sample Statistics

Statistic
Population
parameter

Parameter
pronunciation

Estimator - Roman
letter notation

Estimator -
“hat” notation

Proportion 𝜋 “pi” 𝑝 ̂𝜋
Mean 𝜇 “mu” 𝑥 ̂𝜇
Standard
deviation

𝜎 “sigma” 𝑠 �̂�

Correlation 𝜌 “rho” 𝑟 ̂𝜌
Regression
intercept

𝛽0 “beta zero” or
“beta nought”

𝑏0 ̂𝛽0

Regression
slope

𝛽1 “beta one” 𝑏1 ̂𝛽1

8.2 Populations & Sampling

Recall that a population is a collection of individuals or observations that you would like to
make inferences about. Some examples of populations are:

255



• Citizens of voting age (18 or older) in the United States.
• Students in public elementary schools in Texas.
• Private hospitals receiving Medicaid funding in California.
• Fish in Lake Michigan.

In each case, the definition of the population includes clear inclusion / exclusion criteria. These
help to clarify where inferences are appropriate to be made and where they are not.

In order to select a sample from a population, a population frame must be created. A
population frame includes a list of all possible individuals or observations within the population.
Sometimes this frame is difficult to make - and the result is that the population frame may not
be exactly the same as the population. For example, for the above populations, population
frames might be:

• A list of phone numbers registered to individuals in the United States. (Once contacted,
only those that are citizens 18 and older would be able to be included.)

• A list of public elementary schools (not students), available for the prior year in the
Texas public education state longitudinal data system.

• A list of private hospitals made available from the state of California government in a
database collected every five years. (Once contacted, only those receiving > $0 Medicaid
would be included).

• Areas of Lake Michigan where it is possible to fish (e.g, excluding coves).

When this population frame differs from the population, undercoverage can occur - i.e., there
are parts of the population that may not be able to be studied. For example, citizens over 18
without phone numbers would have a 0% chance of being included in the sample even though
they are part of the population of interest. It is important in research to make this clear and
to understand how these differences might impact results.

Once a population frame is defined, a sampling process is developed that, based upon a
random procedure, allows for making clear inferences from the sample to the population. There
are many possible sampling procedures, some of which include:

• Simple random sampling: Individuals or observations are selected randomly from the
population, each having an equal chance of being selected.

• Random sampling with unequal probability: Individuals or observations are se-
lected randomly, but the probability of selection varies proportional to size or some
other relevant characteristic.

• Cluster sampling: In order to reach individuals or observations, first clusters are
selected (e.g. schools, neighborhoods, hospitals, etc.), and then within these clusters,
individuals or observations are randomly selected.

• Stratified sampling: In order to represent the population well, first the population is
divided into sub-groups (strata) that are similar to one another, and then within these
sub-groups (strata), individuals or observations are randomly selected.

256



Observations or clusters can be selected with equal probability or unequal probability —
the most important feature is that the probability of being selected is known and defined in
advance of selection. In the above examples, these procedures might be used:

• Simple random sampling: Phone numbers are randomly selected with equal proba-
bility.

• Cluster sampling: First schools (clusters) are randomly selected with unequal proba-
bility (e.g., larger schools have a bigger chance of being selected), and then within those
schools selected, students are randomly selected with equal probability.

• Random sampling with unequal probability: Hospitals are selected randomly with
unequal probability (e.g., larger hospitals have a bigger chance of being selected).

• Stratified sampling: Lake Michigan is geographically divided into four regions (strata):
those nearby to the shore in urban areas, those nearby the shore in non-urban areas, those
in the middle north, and those in the middle south. It is expected that the number and
kinds of fish differ across these regions. Within each region, fish are selected randomly
based upon a catch-and-release procedure.

In all of these cases, because the sample is selected randomly from the population, estimates
from the sample can be used to make inferences regarding values of the population parameters.
For example, a sample mean calculated in a random sample of a population can be used to
make inferences regarding the value of the population mean. Without this random selection,
these inferences would be unwarranted.

Finally, note that in the examples and data we use in this book and course, we focus on
random sampling with equal probabilities of selection (i.e. simple random sampling).
Methods to account for clustering, stratification, and unequal selection probabilities require use
of weights and, sometimes, more complicated models. Courses on survey sampling, regression,
and hierarchical linear models will provide more background and details on these cases.

8.3 Movies Example

8.3.1 Research question

Perhaps we are interested in studying films from the 20th century. For example, say we want
to answer the question: “What percentage of movies from the 20th century pass the Bechdel
Test?” The Bechdel Test is a measure of the representation of women in fiction. For a movie
to pass the Bechdel Test it must meet three criteria:

1. The movie must have at least two [named] women in it…
2. who talk to each other…

257



3. about something besides a man.

Determining whether a film meets this criteria requires you to watch and pay attention to the
dialogue in its entirety. It’s not hard to imagine why doing this for the whole population of
movies is not feasible, because there are tens of thousands of them. You must take a sample.
But how do you choose your sample in such a way that you can be confident that your results
will generalize to the whole population of movies?

Let’s discuss how we might go about developing a sampling plan to tackle this question, using
the terminology from Sections 8.1 and 8.2.

8.3.2 Population of interest

Our research question specifies that we are interested in the results of the Bechdel test for
movies in the 20th century. Note that the earliest movies were all silent films, and dialogue
in movies did not become the norm until the 1930s. This means that movies prior to the
1930s are irrelevant in terms of the Bechdel test. Therefore, we can define our population of
interest to be all movies released between 1930 and 1999. The population parameter we
are interested in is 𝜋, the proportion of movies in this population that pass the Bechdel test.

8.3.3 Development of population frame

We must develop a population frame that includes a list of all movies in our population of
interest. Thankfully, the IMDb database functions as a census of movies, and that data is
available in a dataset called movies in the ggplot2movies package. It includes 24 variables
with information on 58788 movies and their ratings by users on IMDb. For now, we’ll look at
a smaller subset of just 4 of these variables: the title of the movie, the year it was released, its
length in minutes, and its average rating on IMDb (out of 10 stars). The full dataset contains
information on movies released from 1893 to 2005, so we should filter only the rows for the
years relevant to our population of interest. Let’s take a look at this data.

movies_30_99 <- movies %>%
select(title, year, length, rating) %>%
filter(year >= 1930 & year <= 1999)

skim(movies_30_99)

Skim summary statistics
n obs: 46522
n variables: 4

�� Variable type:character ����������������������������������������������������������������������������

258



variable missing complete n min max empty n_unique
title 0 46522 46522 1 110 0 44761

�� Variable type:integer ������������������������������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100
length 0 46522 46522 84.38 44.72 1 76 90 100 5220

year 0 46522 46522 1971.94 20.73 1930 1955 1975 1991 1999

�� Variable type:numeric ������������������������������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100
rating 0 46522 46522 5.84 1.53 1 4.9 6 6.9 9.9

How well does this population frame match our population of interest? Should we be concerned
about undercoverage here? The documentation for the ggplot2movies package indicates that
“movies were selected for inclusion if they had a known length and had been rated by at least
one imdb user.” This means that any movies that don’t meet these critera will not appear
in our population frame and therefore have no chance of ending up in our sample. We can
acknowledge this potential source of undercoverage, but movies excluded by these criteria are
not likely to be of interest for our question anyway, so we don’t need to be too concerned in
this scenario.

When we skimmed the data, we saw that one movie is as short as 1 minute and one is as long
as 5220 minutes. Perhaps we feel like this list includes films that we would not classify as
“standard movies,” so in order to eliminate some of these extremes, we decide to narrow our
population of interest to any films that are at least 1 hour in length, but at most 3.5 hours in
length.

movies_30_99 <- movies_30_99 %>%
filter(length >= 60 & length <= 210)

skim(movies_30_99)

Skim summary statistics
n obs: 39123
n variables: 4

�� Variable type:character ����������������������������������������������������������������������������
variable missing complete n min max empty n_unique

title 0 39123 39123 1 105 0 37740

�� Variable type:integer ������������������������������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100

259

https://cran.r-project.org/web/packages/ggplot2movies/ggplot2movies.pdf


length 0 39123 39123 95.33 18.51 60 85 93 103 210
year 0 39123 39123 1973.4 19.7 1930 1958 1977 1991 1999

�� Variable type:numeric ������������������������������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100
rating 0 39123 39123 5.75 1.51 1 4.8 5.9 6.8 9.9

This is an example of how data in a population frame can actually help you to think more
critically about your population of interest. Seeing the range of movies that are included in
the frame prompted us to realize we were interested in something more specific than just “all
movies,” and therefore we can refine our definition and create additional inclusion criteria.
Note that as a researcher or analyst sometimes you have to make decisions about your data
that seem somewhat arbitrary, but so long as you document each decision and are explicit
and transparent about your inclusion criteria, you (and others) will be able to determine with
clarity what kinds of generalizations can be made from your eventual results.

Let’s list all of our inclusion criteria. Our population frame includes movies that:

1. are included in the IMDb database
2. were released between 1930 and 1999
3. have a known length between 60 and 210 minutes
4. were rated by at least one IMDb user

This results in a population of size 𝑁 = 39123 movies.

8.3.4 Sampling plan

Now that we’ve solidified our population of interest and our population frame, we can establish
a sampling plan for how to take a random sample from this population. Perhaps we decide it
is feasible for our research team to watch and record data on 500 movies, so we decide to draw
a sample of 𝑛 = 500. We will demonstrate 3 different random sampling plans, but note that in
real life you will make a decision about the most appropriate and feasible plan and only draw
one random sample.

Simple random sampling

Let’s start by drawing a simple random sample, where each of the 39123 movies have an equal
probability of ending up in our sample. We can accomplish this in R using the sample_n()
function.

movies_SRS <- movies_30_99 %>%
sample_n(500)

glimpse(movies_SRS)

260



Rows: 500
Columns: 4
$ title <chr> "Anne of Green Gables", "Dark Age", "Tevya", "Cyclone on Horseb~
$ year <int> 1934, 1987, 1939, 1941, 1985, 1967, 1964, 1970, 1971, 1958, 198~
$ length <int> 78, 91, 93, 60, 105, 98, 100, 102, 87, 78, 120, 122, 91, 87, 78~
$ rating <dbl> 7.1, 4.5, 6.4, 5.6, 6.7, 4.6, 5.2, 3.4, 6.1, 3.5, 7.6, 6.8, 3.3~

Stratified sampling with unequal probability

Perhaps we expect movies within a particular decade to be more similar to each other than
to movies in other decades. In this case, we could take a stratified sample (instead of a simple
random sample), where the population is partitioned into sub-groups (i.e. strata) by decade,
and a random sample is taken within each decade. In order to accomplish this in R, let’s first
create a new decade variable and then use group_by() in combination with sample_n() to
take an independent random sample for each decade. Note that since there are 7 decades, we
can sample 71 movies from each decade in order to end up with approximately 500 movies
total in our sample (7 ∗ 71 = 497)

movies_30_99 <- movies_30_99 %>%
mutate(decade = floor(year / 10) * 10)

movies_strata <- movies_30_99 %>%
group_by(decade) %>%
sample_n(71)

glimpse(movies_strata)

Rows: 497
Columns: 5
Groups: decade [7]
$ title <chr> "Broken Lullaby", "Bonnie Scotland", "Charlie Chan at the Circu~
$ year <int> 1932, 1935, 1936, 1938, 1938, 1935, 1934, 1938, 1933, 1938, 193~
$ length <int> 76, 80, 72, 93, 90, 67, 73, 66, 62, 63, 92, 78, 82, 80, 79, 63,~
$ rating <dbl> 7.2, 6.7, 7.1, 6.5, 6.9, 4.5, 5.9, 5.9, 6.8, 6.4, 5.9, 6.9, 7.4~
$ decade <dbl> 1930, 1930, 1930, 1930, 1930, 1930, 1930, 1930, 1930, 1930, 193~

Note that because there were not an equal number of movies per decade in the population,
sampling a fixed number of movies per decade (e.g. 71) is actually an example of sampling
with unequal probabilities. For example, since there were only 2863 movies in the 1930s, each
movie from this decade had a 71/2863∗100 = 2.48% chance of being selected, but movies from
the 1990s only had a 71/10788 ∗ 100 = 0.658% chance of being selected. Table 8.2 shows the
selection probabilities for each strata.

261



movies_30_99 %>%
count(decade) %>%
mutate(prob = 71 / n)

Table 8.2: Selection probability by decade

Table 8.2: Selection probability by decade

decade n prob
1930 2863 0.025
1940 3226 0.022
1950 4271 0.017
1960 4782 0.015
1970 5841 0.012
1980 7352 0.010
1990 10788 0.007

Stratified sampling with equal probability

We could instead decide to draw a stratified sample with equal probabilities. Since overall
we want a sample with 𝑛 = 500, and we have a population of size 𝑁 = 39123, we can
choose to sample 500/39123 ∗ 100 = 1.28% of the movies from each strata. Using the function
sample_frac() instead of sample_n() allows us to do this.

movies_strata_equal <- movies_30_99 %>%
group_by(decade) %>%
mutate(N_strata = n()) %>% #needed for later calculations
sample_frac(0.0128)

Table 8.3 shows the number of movies that were sampled per strata, n_strata. These numbers
are proportional to the total number of movies in that decade in the population N_strata.
This results in each movie in the population having equal probability of selection into the
sample.

movies_strata_equal %>%
group_by(decade) %>%
summarise(n_strata = n(), N_strata = unique(N_strata),

prob = n_strata / N_strata)

262



Table 8.3: Stratified sampling with equal probabilities (i.e. proportional to stratum size)

Table 8.3: Stratified sampling with equal probabilities (i.e. proportional to stratum size)

decade n_strata N_strata prob
1930 37 2863 0.013
1940 41 3226 0.013
1950 55 4271 0.013
1960 61 4782 0.013
1970 75 5841 0.013
1980 94 7352 0.013
1990 138 10788 0.013

Once we have our sample of 𝑛 movies, we could then begin data collection. For each movie,
we would record whether or not it passed the Bechdel test. We would then calculate our
point estimate ̂𝜋, the proportion of movies in our sample that pass the Bechdel test, which
serves as our estimate of the population proportion 𝜋. Recall that we mentioned in Section 8.2
that using a more complicated sampling method, such as stratified sampling, also requires
a more complicated formula for computing point estimates. In the simple random sampling
case, however, we calculate the sample proportion in exactly the way you would expect: ̂𝜋 = 𝑥

𝑛 ,
where 𝑥 is the number of movies in the sample passing the test, and 𝑛 is the sample size.

In the next few chapters we will discuss how much uncertainty we would expect there to be
in our estimate ̂𝜋 due to the fact that we are only observing a sample and not the whole
population.

8.4 Samples from Unclear Populations

As an analyst, you will often encounter samples of data that come from unspecified or unclear
populations. For example, you:

• developed a survey regarding relationship preferences on SurveyMonkey and then pro-
moted completing this survey on Facebook. Now you have a sample of 𝑛 = 200 completed
surveys - but what population do they come from?

• conducted an experiment in a psychology lab. The experiment is advertised to students
in Introductory Psychology courses and in fliers around campus. You now have a sample
of 𝑛 = 50 participants in the experiment - but what population do they come from?

• scraped some data off the web regarding movie reviews on Rotten Tomatoes. You now
have a huge sample of 𝑛 = 10, 000 reviews by people - but what population do these
reviews come from?

In these situations, statistically you do two things:

263



1. You can assume that the sample you have is a random sample from some population.
You can thus make inferences to this larger population using the sampling theory we will
develop in the next chapters.

2. You need to define as clearly as you can what population this sample is from. This
involves using clear inclusion / exclusion criteria.

Finally, keep in mind that no study generalizes everywhere. It is your job as analyst to
make clear where results might be useful for making inferences and where they may not. To
do this requires describing characteristics of the sample clearly when interpreting results and
making inferences. In general:

• Ask: Do the results apply to all individuals or observations? If not, think through how
the results might be dependent upon the types of individuals or observations in your
sample.

• Report clearly the characteristics that might affect interpretation and inferences (e.g.,
race, ethnicity, gender, age, education).

• Report clearly how the data was generated. Was it from on online survey? Report this.
Was it from a lab study advertised in a college? Report this.

8.5 Causality vs. Generalizability

In Chapter 7 we talked about the process of random assignment (e.g. in randomized experi-
ments), and in this chapter we talked about the process of random sampling. These two types
of randomization processes are at the core of inferential statistics:

• Random assignment allows us to make causal claims
• Random sampling allows us to make generalizable claims

The ideal experiment would have both random assignment and random sampling so that you
could have a casual conclusion that is generalizable to the whole population. Figure 8.1 shows
a 2 X 2 table of the possible experiment and observational study types and the conclusions
that can be drawn from each.

Let’s give an example of each.

• Random assignment + random sampling

264



Figure 8.1: Random Assignment vs. Random Sampling

– You take a random sample of students at your university to participate in your
study on exercise and stress. You randomly assign half of the participants to a
prescribed workout regimen of 30 minutes of cardio per day. You collect data on
the stress levels in all participants via surveys and biomarkers such as cortisol. Your
results can validly conclude that any differences in stress between the two groups
were caused by the excersize regimen because it was randomly assigned, and those
conclusions can be generalized to the whole student body because it was a random
sample.

• Random assignment only

– You advertise your study on campus and ask volunteers to participate. Once you
have recruited enough participants, you randomly assign half of them to the exercise
treatment. Your results can validly conclude that the effects of exercise on stress are
causal because you used random assignment, but you cannot generalize beyond your
sample because you did not use random sampling. There could be characteristics
about those that volunteered to particpate that influence how effective the treatment
is likely to be as compared to those who chose not to participate.

• Random sampling only

– You take a random sample of students at the university to participate in your study.
You collect data on their exercise habits and their stress. If your data indicates a

265



negative relationship between exercise and stress (i.e. as exercise increases, stress
decreases), you can conclude that relationship is generalizable to the whole student
body, but you cannot claim that increased exercise caused reduced stress. There
could be confounding characteristics about students who choose to exercise more
that also reduce their stress (e.g. better sleep or nutrition habits).

• Neither random assignment nor random sampling

– You advertise your study on campus and ask volunteers to participate. You collect
data on their exercise habits and their stress. If your data indicates a negative
relationship between exercise and stress, you can only validly conclude that the
relationship is associational and true for your sample only. There may differences
between people in your sample who choose to exercise and those who do not, as
well as differences between people who volunteered to participate in your study and
those who did not.

In Chapter 7 we demonstrated the magic of randomization and why randomized experiments
allow you to make causal claims. In this chapter we have introduced you to the idea that
random sampling allows you to make generalizable claims from your sample to a population,
but in Chapter 9 we will introduce and demonstrate the statistical theory for why this is true.

8.6 Exercises

8.6.1 Conceptual

Exercise 8.1. The US Census is performed once every 10 years. Which of the following
describes the exact value that results from this endeavor?

a) a sample statistic
b) a sample estimate
c) a population
d) a population parameter
e) a random sample
f) a random count

Exercise 8.2. Which of the following denote sample statistics? Select all that apply.

a) 𝜇 d. ̄𝑥 g. 𝑝 j. 𝜎
b) ̂𝜇 e. 𝜋 h. ̂𝑝 k. �̂�
c) 𝑥 f. ̂𝜋 i. 𝑠

Exercise 8.3. Which of the following types of sampling involve random selection? Select all
that apply.

266



a) Simple random sampling
b) Random sampling with unequal probability
c) Cluster sampling
d) Stratified sampling

Exercise 8.4. Farmer Henry owns an apple picking orchard and wants to estimate the total
number of apples on his lot so that he can calculate his potential earnings. It would not be
time or cost efficient to count every single apple in the orchard. Instead Farmer Henry divides
his land into 20 regions and randomly selects one region to count. What type of sampling is
this?

a) Simple random sampling
b) Cluster sampling
c) Stratified sampling
d) Systematic sampling
e) None of the above

Exercise 8.5. You are interested in opening an ice cream parlor and want to determine what
flavors to offer. You sit outside Baskin Robins and ask every 8th customer what their favorite
ice cream flavor is. What type of sampling is this?

a) Simple random sampling
b) Cluster sampling
c) Stratified sampling
d) Systematic sampling
e) None of the above

Exercise 8.6. As an upcoming politician, you want to determine if daylight savings time
should be removed. You obtain a list of all citizens in the United States and randomly sample
500 citizens from each state. What type of sampling is this?

a) Simple random sampling
b) Cluster sampling
c) Stratified sampling
d) Systematic sampling
e) None of the above

Exercise 8.7. In a study, towns in the state of Illinois are chosen with their probability of
selection based on the size of the town. Then, individuals living in these towns are randomly
selected (with equal probability) to participate in an Illinois wellness survey. What type of
sampling is this?

a) Simple random sampling

267



b) Random sampling with unequal probability
c) Cluster sampling
d) Stratified sampling

Exercise 8.8. True or False: Random assignment allows us to make generalizable claims and
random sampling allows us to make causal claims.

a) True
b) False

Exercise 8.9. A generalizable correlation statement for the whole population that does not
allow for a causal conclusion is the result of which type of experiment/observational study?

a) An experiment with random assignment and random sampling
b) An experiment with random assignment and but no random sampling
c) An observational study with random sampling but no random assignment
d) An observational study with no random sampling and no random assignment

Exercise 8.10. You are an employee at Walmart and want to determine customer satisfaction
in regards to opening and closing times. To determine this, you stand out front of the store
right when it opens and survey the first 100 (willing) customers that enter the store. Can you
make causal and generalizable claims from the results of your survey?

a) Yes, you can make causal and generalizable claims from the results of your survey
b) No, you can make causal claims but you cannot make generalizable claims from the

results of your survey
c) No, you can make generalizable claims but you cannot make causal claims from the

results of your survey
d) No, you cannot make causal or generalizable claims from the results of your survey

8.6.2 Application

Exercise 8.11. You are tasked with surveying the general populace of the US to determine
if US citizens think the government is doing an adequate job of supporting climate change
endeavors. To do so, you are provided with a master list of all addresses in the US and are
asked to use this to perform a simple random sample of 50,000 households, sending one survey
to each household for completion.

Define your population of interest, population parameter, population frame and point estimate.
Describe any limitations of the study (does undercoverage exist?).

268



Exercise 8.12. Consider the scenario from Exercise 8.11 again. The organization tasking
you with the survey believes that states are similar, and asks you to randomly sample 1,000
households within each state (using the state-wide master lists of addresses), sending one
survey to each household for completion.

What type of sample is this and how would this sample differ from the simple random sample
you performed in Exercise 8.11? Describe any limitations of the study (does undercoverage
exist?) and compare any limitations to that of the design in Exercise 8.11.

8.6.3 Advanced

Exercise 8.13. You work for an organization that aims to raise money to protect the Amazon
rainforest. The organization wants to talk about endangered species that live within the
Amazon rainforest at an upcoming benefit, but the previously hired statistician was terrified
of jaguars so he/she was unable to perform the study to estimate the jaguar population.
Consequently, your organization cannot say for certain if jaguars are endangered or not.

Develop a sampling plan to estimate the total number of jaguars in the world. What type of
sample would you perform? Define your population of interest, population parameter, popu-
lation frame and point estimate. Describe any limitations of the study (does undercoverage
exist?).

269



9 Sampling Distributions

In Chapter 8 we introduced inferential statistics by discussing several ways to take a random
sample from a population and that estimates calculated from random samples can be used to
make inferences regarding parameter values in populations. In this chapter we focus on how
these inferences can be made using the theory of repeated sampling.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(moderndive)
library(skimr)
library(dslabs)
library(UsingR)

9.1 Distributions

Recall from Section 2.5 that histograms allow us to visualize the distribution of a numerical
variable: where the values center, how they vary, and the shape in terms of modality and
symmetry/skew. Figure 9.1 shows examples of some common distribution shapes.

When you visualize your population or sample data in a histogram, often times it will follow
what is called a parametric distribution. Or simply put, a distribution with a fixed set of
parameters. There are many known discrete and continuous distributions, however we will
only focus on three common distributions:

• Normal distribution
• T-distribution
• Chi-squared distribution.

270



Figure 9.1: Common distribution shapes

9.1.1 Normal Distribution

The Normal Distribution is the most common and important of all distributions. It is
characterized by two parameters: 𝜇, which determines the center of the distribution, and 𝜎
which determines the spread. In Figure 9.16, the solid- and dashed-line curves have the same
standard deviation (i.e. 𝜎 = 1), so they have identical spread, but they have different means,
so the dashed curve is simply shifted to the right to be centered at 𝜇 = 2. On the other
hand, the solid- and dotted-line curves are centered around the same value (i.e. 𝜇 = 0), but
the dotted curve has a larger standard deviation and is therefore more spread out. The solid
line is a special case of the Normal distribution called the Standard Normal distribution,
which has mean 0 and standard deviation 1. Importantly, for all possible values of 𝜇 and 𝜎,
the Normal distribution is symmetric and unimodal.

Normally distributed random variables arise naturally in many contexts. For examples, IQ,
birth weight, height, shoe size, SAT scores, and the sum of two dice all tend to be Normally
distributed. Let’s consider the birth weight of babies from the babies data frame included
in the UsingR package. We will use a histogram to visualize the distribution of weight for
babies. Note that it is often difficult to obtain population data, for the sake of this example
let’s assume we have the entire population.

babies %>%
summarize(mean_weight = mean(wt),

sd_weight = sd(wt))

# A tibble: 1 x 2
mean_weight sd_weight

271



0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6
x

y

linetype

mean = 0, sd = 1

mean = 0, sd = 2

mean = 2, sd = 1

Normal distribution

Figure 9.2: Normal distribution

272



<dbl> <dbl>
1 120. 18.2

ggplot(babies, aes(x=wt))+
geom_histogram(bins=30, color="white")+
labs(title = "Distribution of Birth Weight in Ounces", x="weight")+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))

0

50

100

150

50 100 150
weight

co
un

t

Distribution of Birth Weight in Ounces

Visually we can see that the distribution is bell-shaped, that is, unimodal and approximately
symmetric. It clearly resembles a Normal distribution from the shape aspect with a mean
weight of 119.6 ounces and standard deviation of 18.2 ounces. However, not all bell shaped
distributions are Normally distributed.

The Normal distribution has a very convenient property that says approximately 68%, 95%,
and 99.7% of data fall within 1, 2, and 3 standard deviations of the mean, respectively. How
can we confirm that the disbursement of birth weights adheres to this property? That would be
difficult to visually check with a histogram. We could manually calculate the actual proportion
of data that is within one, two, and three standard deviations of the mean, however that can
be tedious. Luckily, a convenient tool exists for confirming that the disbursement of data is

273



Normally distributed called a QQ plot, or quantile-quantile plot. A QQ plot is a scatterplot
created by plotting two sets of quantiles (percentiles) against one another. That is, it plots
the quantiles from our sample data against the theoretical quantiles of a Normal distribution.
If the data really is Normally distributed, the sample (data) quantiles should match-up with
the theoretical quantiles. The data should match up with theory! Graphically we should see
the points fall along the line of identity, where data matches theory. Let’s see if the QQ plot
of birth weights suggest that the distribution is Normal.

ggplot(babies, aes(sample = wt)) +
geom_qq(shape = 21) +
geom_qq_line() +
labs(

title = "Normal Q-Q Plot",
x = "Theoretical Quantiles",
y = "Sample Quantiles"
) +

theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))

50

75

100

125

150

175

−2 0 2
Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal Q−Q Plot

The points in the QQ plot appear to fall along the line of identity, for the most part. Notice

274



points at each end deviate slightly from the line at the. Meaning sample quartiles deviate
more from theoretical quartiles at the tails. The QQ plot is suggesting that our sample data
has more extreme data in the tails than an exact Normal distribution would suggest. Similar
to a histogram this is a visual check and not an airtight proof. Given that our birth weight
data is unimodal, symmetric, and the points of the QQ plot fall close enough to the line of
identity, we can say the data is approximately Normally distributed. It is common to drop
the approximately and say Normally distributed.

9.1.2 Empirical Rule

Figure 9.3: Empirical Rule: property of the Normal Distribution

The property that approximately 68%, 95%, and 99.7% of data falls within 1, 2, and 3 standard
deviations of the mean, respectively is known as the Empirical Rule. Figure 9.3 displays this
phenomenon. Note this is a property of the Normal distribution in general, for all values of 𝜇
and 𝜎.
If you were to plot the distribution of a Normally distributed random variable, this means you
would expect:

• Approximately 68% of values to fall between 𝜇 − 𝜎 and 𝜇 + 𝜎
• Approximately 95% of values to fall between 𝜇 − 2𝜎 and 𝜇 + 2𝜎
• Approximately 99.7% of values to fall between 𝜇 − 3𝜎 and 𝜇 + 3𝜎

Let’s continue to consider our birth weight data from the babies data set. We calculated
above a mean 𝜇 = 119.6 ounces and standard deviation 𝜎 = 18.2 ounces. Remember, we are

275



assuming this is population data for this example. Using the empirical rule we expect 68%
of data to fall between 101.4 and 137.8 ounces; 95% of data to fall between 83.2 and 155.6
ounces; and 99.7% of data to fall between 65 and 174.2 ounces. It is important to note that
the total area under the distribution curve is 1 or 100%.

We can validate the empirical rule by comparing it to the actual values.

babies %>%
mutate(observed_1_sd = ifelse(101.4 < wt & wt< 137.8 ,1,0),

observed_2_sd = ifelse(83.2 < wt & wt< 155.6 ,1,0),
observed_3_sd = ifelse(65 < wt & wt< 174.2 ,1,0)) %>%

# calculate actual proportion within 1, 2, and 3 sd
summarise(actual_1_sd = mean(observed_1_sd),

actual_2_sd = mean(observed_2_sd),
actual_3_sd = mean(observed_3_sd))

# A tibble: 1 x 3
actual_1_sd actual_2_sd actual_3_sd

<dbl> <dbl> <dbl>
1 0.697 0.947 0.994

We can see that the actual proportion of data within 1 standard deviation is 69.6% compared
to the expected 68%; within 2 standard deviations is 94.7% compared to the expected 95%;
within 3 standard deviations is 99.4% compared to the expected 99.7%. Since all proportions
are reasonably close, we find that the empirical rule is a very convenient approximation.

9.1.3 Standardization

A special case of the Normal distribution is called the Standard Normal distribution,
which has mean 0 and standard deviation 1. Any Normally distributed random variable can
be standardized, or in other words converted into a Standard Normal distribution using the
formula:

𝑆𝑇 𝐴𝑇 = 𝑥 − 𝜇
𝜎 .

Figure 9.4 demonstrates the relationship between a Normally distributed random variable, 𝑋,
and its standardized statistic.

In some literature, STAT is called a Z-score or test statistic. Standardization is a useful
statistical tool as it allows us to put measures that are on different scales all onto the same
scale. For example, if we have a STAT value of 2.5, we know it will fall fairly far out in the

276



Figure 9.4: Converting normally distributed data to standard normal.

−3 −2 −1 0 1 2 3
STAT

Figure 9.5: N(0,1) example values: STAT = -0.5, STAT = 2.5

277



right tail of the distribution. Or if we have a STAT value of -0.5, we know it falls slightly to
the left of center. This is displayed in Figure 9.5.

Continuing our example of babies birth weight, let’s observe the relationship between weight
and the standardized statistic, STAT.

Figure 9.6: Standardized birth weight distribution.

What if we wanted to know the percent of babies that weigh less than 95 ounces at birth?
Start by converting the value 95 to STAT.

𝑆𝑇 𝐴𝑇 = 𝑥 − 𝜇
𝜎 = 95 − 119.6

18.2 = −1.35

Meaning that 95 ounces is 1.35 standard deviations below the mean. The standardized statistic
already gives us an idea for a range of babies that weight less than 95 ounces because it falls
somewhere between -2 and -1 standard deviations. Based on the empirical rule we know this
probability should be between 2.5% and 16%, see Figure 9.7 for details.

We can calculate the exact probability of a baby weighing less than 95 ounces using the pnorm()
function.

pnorm(q=95, mean=119.6, sd=18.2)

[1] 0.0882

278



Figure 9.7: Standardized birth weight distribution.

pnorm(q=-1.35, mean=0, sd=1)

[1] 0.0885

There is an 8.8% chance a baby weights less than 95 ounces. Notice that you can use either
the data value or standardized value, the two functions give you the same results and any
difference is simply due to rounding. By default, pnorm() calculates the area less than or to
the left of a specified value.

What if instead we want to calculate a value based on a percent. For example, 25% of babies
weigh less than what weight? This is essentially the reverse of our previous question.

We will use the function qnorm().

qnorm(p=0.25, mean=119.6, sd=18.2)

[1] 107

qnorm(p=0.25, mean=0, sd=1)

279



Figure 9.8: Standardized birth weight distribution.

[1] -0.674

This returns the weight of 107.3 or STAT of -0.67. Meaning 25% of babies weigh less than
107.3 ounces or in other words are 0.67 standard deviations below the mean. Notice by default
in qnorm() you are specifying the area less than or to the left of the value. If you need to
calculate the area greater than a value or use a probability that is greater than a value, you
can specify the upper tail by adding on the statement lower.tail=FALSE.

9.1.4 T-Distribution

The t-distribution is a type of probability distribution that arises while sampling a normally
distributed population when the sample size is small and the standard deviation of the popu-
lation is unknown. The t-distribution (denoted 𝑡(𝑑𝑓)) depends on one parameter, 𝑑𝑓 , and
has a mean of 0 and a standard deviation of √ 𝑑𝑓

𝑑𝑓−2 . Degrees of freedom are dependent on the
sample size and statistic (e.g. 𝑑𝑓 = 𝑛 − 1).
In general, the t-distribution has the same shape as the Standard Normal distribution (sym-
metric, unimodal), but it has heavier tails. As sample size increases (and therefore degrees
of freedom increases), the t-distribution becomes a very close approximation to the Normal
distribution.

280



0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6
STAT

y

linetype

Standard Normal

t−distribution, df = 2

t−distribution, df = 30

Figure 9.9: t-distribution with example 95% cutoff values

281



Because the exact shape of the t-distribution depends on the sample size, we can’t define one
nice rule like the Empirical Rule to know which “cutoff” values correspond to 95% of the data,
for example. If 𝑑𝑓 = 30, for example, it can be shown that 95% of the data will fall between
-2.04 and 2.04, but if 𝑑𝑓 = 2, 95% of the data will fall between -4.3 and 4.3. This is what we
mean by the t-distribution having “heavier tails”; more of the observations fall farther out in
the tails of the distribution, compared to the Normal distribution.

Similar to the Normal distribution we can calculate probabilities and test statistics from a t-
distribution using the pt() and qt() function, respectively. You must specify the df parameter
which recall is a function of sample size, 𝑛, and dependent on the statistic. We will learn more
about the df of different statistics in Section 9.4.

9.1.5 Normal vs T

The Normal distribution and t-distribution are very closely related, how do we know when to
use which one? The t-distribution is used when the standard deviation of the population, 𝜎,
is unknown. The normal distribution is used when the population standard deviation, 𝜎, is
known. The fatter tail in the t-distribution allows us to take into account the uncertainty in
not knowing the true population standard deviation.

9.1.6 Chi-squared Distribution

The Chi-squared distribution is unimodal but skewed right. The Chi-squared distribution
depends on one parameter 𝑑𝑓 .

282



0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30
x

y

linetype

df = 10

df = 2

df = 5

Chi−squared distribution

9.2 Repeated Sampling

A vast majority of the time we do not have data for the entire population of interest. Instead we
take a sample from the population and use this sample to make generalizations and inferences
about the population. How certain can we be that our sample estimate is close to the true
population? In order to answer that question we must first delve into a theoretical framework,
and use the theory of repeated sampling to develop the Cental Limit Theorem (CLT) and
confidence intervals for our estimates.

9.2.1 Theory of Repeated Samples

Imagine that you want to know the average age of individuals at a football game, so you take
a random sample of 𝑛 = 100 people. In this sample, you find the average age is ̄𝑥 = 28.2.
This average age is an estimate of the population average age 𝜇. Does this mean that
the population mean is 𝜇 = 28.2? The sample was selected randomly, so inferences are
straightforward, right?

It’s not this simple! Statisticians approach this problem by focusing not on the sample in
hand, but instead on possible other samples. We will call this counter-factual thinking.

283



This means that in order to understand the relationship between a sample estimate we are
able to compute in our data and the population parameter, we have to understand how results
might differ if instead of our sample, we had another possible (equally likely) sample. That
is,

• How would our estimate of the average age change if instead of these 𝑛 = 100 individuals
we had randomly selected a different 𝑛 = 100 individuals?

While it is not possible to travel back in time for this particular question, we could instead
generate a way to study this exact question by creating a simulation. We will discuss sim-
ulations further in Subsections 9.2.2 and 9.2.3 and actually conduct one, but for now, let’s
just do a thought experiment. Imagine that we create a hypothetical situation in which we
know the outcome (e.g., age) for every individual or observation in a population. As a result,
we know what the population parameter value is (e.g., 𝜇 = 32.4). Then we would randomly
select a sample of 𝑛 = 100 observations and calculate the sample mean (e.g. ̄𝑥 = 28.2). And
then we could repeat this sampling process – each time selecting a different possible sample
of 𝑛 = 100 – many, many, many times (e.g., 10, 000 different samples of 𝑛 = 100), each time
calculating the sample mean. At the end of this process, we would then have many different
estimates of the population mean, each equally likely.

We do this type of simulation in order to understand how close any one sample’s estimate is
to the true population mean. For example, it may be that we are usually within ±2 years?
Or maybe ±5 years? We can ask further questions, like: on average, is the sample mean the
same as the population mean?

It is important to emphasize here that this process is theoretical. In real life, you do not
know the values for all individuals or observations in a population. (If you did, why sample?)
And in real life, you will not take repeated samples. Instead, you will have in front of you a
single sample that you will need to use to make inferences to a population. What simulation
exercises provide are properties that can help you understand how far off the sample estimate
you have in hand might be for the population parameter you care about.

9.2.2 Sampling Activity

In the previous section, we provided an overview of repeated sampling and why the theoretical
exercise is useful for understanding how to make inferences. This way of thinking, however,
can be hard in the abstract.

What proportion of this bowl’s balls are red?

In this section, we provide a concrete example, based upon a classroom activity completed in
an introductory statistics class with 33 students. In the class, there is a large bowl of balls
that contains red and white balls. Importantly, we know that 37.5% of the balls are
red (someone counted this!).

284



Figure 9.10: A bowl with red and white balls.

The goal of the activity is to understand what would happen if we didn’t actually count all
of the red balls (a census), but instead estimated the proportion that are red based upon a
smaller random sample (e.g., n = 50).

Taking one random sample

We begin by taking a random sample of n = 50 balls. To do so, we insert a shovel into the
bowl, as seen in Figure 9.11.

Using the shovel, we remove a number of balls as seen in Figure 9.12.

Observe that 17 of the balls are red. There are a total of 5 x 10 = 50 balls, and thus 0.34
= 34% of the shovel’s balls are red. We can view the proportion of balls that are red in this
shovel as a guess of the proportion of balls that are red in the entire bowl. While not as exact
as doing an exhaustive count, our guess of 34% took much less time and energy to obtain.

Everyone takes a random sample (i.e., repeating this 33 times)

In our random sample, we estimated the proportion of red balls to be 34%. But what if we
were to have gotten a different random sample? Would we remove exactly 17 red balls again?
In other words, would our guess at the proportion of the bowl’s balls that are red be exactly
34% again? Maybe? What if we repeated this exercise several times? Would we obtain exactly
17 red balls each time? In other words, would our guess at the proportion of the bowl’s balls
that are red be exactly 34% every time? Surely not.

285



Figure 9.11: Inserting a shovel into the bowl.

Figure 9.12: Fifty balls from the bowl.

286



To explore this, every student in the introductory statistics class repeated the same activity.
Each person:

• Used the shovel to remove 50 balls,
• Counted the number of red balls,
• Used this number to compute the proportion of the 50 balls they removed that are red,
• Returned the balls into the bowl, and
• Mixed the contents of the bowl a little to not let a previous group’s results influence the

next group’s set of results.

However, before returning the balls into the bowl, they are going to mark the proportion of
the 50 balls they removed that are red in a histogram as seen in Figure 9.13.

Recall from Section 2.5 that histograms allow us to visualize the distribution of a numerical
variable: where the values center and in particular how they vary. The resulting hand-drawn
histogram can be seen in Figure 9.14.

Observe the following about the histogram in Figure 9.14:

• At the low end, one group removed 50 balls from the bowl with proportion between 0.20
= 20% and 0.25 = 25%

• At the high end, another group removed 50 balls from the bowl with proportion between
0.45 = 45% and 0.5 = 50% red.

• However the most frequently occurring proportions were between 0.30 = 30% and 0.35
= 35% red, right in the middle of the distribution.

• The shape of this distribution is somewhat bell-shaped.

287



Figure 9.13: Constructing a histogram of proportions.

288



Figure 9.14: Hand-drawn histogram of 33 proportions.

289



Let’s construct this same hand-drawn histogram in R using your data visualization skills that
you honed in Chapter 2. Each of the 33 student’s proportion red is saved in a data frame
tactile_prop_red which is included in the moderndive package you loaded earlier.

tactile_prop_red
View(tactile_prop_red)

Let’s display only the first 10 out of 33 rows of tactile_prop_red’s contents in Table 9.2.

Table 9.2: First 10 out of 33 groups’ proportion of 50 balls that are red.

Table 9.2: First 10 out of 33 groups’ proportion of 50 balls that are red.

student replicate red_balls prop_red
Ilyas 1 21 0.42
Morgan 2 17 0.34
Martin 3 21 0.42
Clark 4 21 0.42
Riddhi 5 18 0.36
Andrew 6 19 0.38
Julia 7 19 0.38
Rachel 8 11 0.22
Daniel 9 15 0.30
Josh 10 17 0.34

Observe for each student we have their names, the number of red_balls they obtained, and
the corresponding proportion out of 50 balls that were red named prop_red. Observe, we also
have a variable replicate enumerating each of the 33 students; we chose this name because
each row can be viewed as one instance of a replicated activity: using the shovel to remove 50
balls and computing the proportion of those balls that are red.

We visualize the distribution of these 33 proportions using a geom_histogram() with
binwidth = 0.05 in Figure 9.15, which is appropriate since the variable prop_red is
numerical. This computer-generated histogram matches our hand-drawn histogram from the
earlier Figure 9.14.

ggplot(tactile_prop_red, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red",

title = "Distribution of 33 proportions red")

290



0.0

2.5

5.0

7.5

0.2 0.3 0.4 0.5
Proportion of 50 balls that were red

co
un

t

Distribution of 33 proportions red

Figure 9.15: Distribution of 33 proportions based on 33 samples of size 50

291



What are we doing here?

We just worked through a thought experiment in which we imagined 33 different realities
that could have occurred. In each, a different random sample of size 50 balls was selected
and the proportion of balls that were red was calculated, providing an estimate of the true
proportion of balls that are red in the entire bowl. We then compared these estimates to the
true parameter value.

We found that there is variation in these estimates – what we call sampling variability –
and that while the estimates are somewhat near to the population parameter, they are not
typically equal to the population parameter value. That is, in some of these realities, the
sample estimate was larger than the population value, while in others, the sample estimate
was smaller.

But why did we do this? It may seem like a strange activity, since we already know the
value of the population proportion. Why do we need to imagine these other realities? By
understanding how close (or far) a sample estimate can be from a population parameter in
a situation when we know the true value of the parameter, we are able to deduce
properties of the estimator more generally, which we can use in real-life situations in which we
do not know the value of the population parameter and have to estimate it.

Unfortunately, the thought exercise we just completed wasn’t very precise – certainly there
are more than 33 possible alternative realities and samples that we could have drawn. Put
another way, if we really want to understand properties of an estimator, we need to repeat
this activity thousands of times. Doing this by hand – as illustrated in this section – would
take forever. For this reason, in Section 9.2.3 we’ll extend the hands-on sampling activity we
just performed by using a computer simulation.

Using a computer, not only will we be able to repeat the hands-on activity a very large number
of times, but it will also allow us to use shovels with different numbers of slots than just 50.
The purpose of these simulations is to develop an understanding of two key concepts relating
to repeated sampling: understanding the concept of sampling variation and the role that
sample size plays in this variation.

9.2.3 Computer simulation

In the previous Section 9.2.2, we began imagining other realities and the other possible samples
we could have gotten other than our own. To do so, we read about an activity in which a
physical bowl of balls and a physical shovel were used by 33 members of a statistics class. We
began with this approach so that we could develop a firm understanding of the root ideas
behind the theory of repeated sampling.

In this section, we’ll extend this activity to include 10,000 other realities and possible samples
using a computer. We focus on 10,000 hypothetical samples since it is enough to get a strong

292



understanding of the properties of an estimator, while remaining computationally simple to
implement.

Using the virtual shovel once

Let’s start by performing the virtual analogue of the tactile sampling simulation we performed
in Section 9.2.2. We first need a virtual analogue of the bowl seen in Figure 9.10. To this
end, we included a data frame bowl in the moderndive package whose rows correspond exactly
with the contents of the actual bowl.

bowl

# A tibble: 2,400 x 2
ball_ID color

<int> <chr>
1 1 white
2 2 white
3 3 white
4 4 red
5 5 white
6 6 white
7 7 red
8 8 white
9 9 red
10 10 white
# i 2,390 more rows

Observe in the output that bowl has 2400 rows, telling us that the bowl contains 2400 equally-
sized balls. The first variable ball_ID is used merely as an “identification variable” for this
data frame; none of the balls in the actual bowl are marked with numbers. The second variable
color indicates whether a particular virtual ball is red or white. View the contents of the bowl
in RStudio’s data viewer and scroll through the contents to convince yourselves that bowl is
indeed a virtual version of the actual bowl in Figure 9.10.

Now that we have a virtual analogue of our bowl, we now need a virtual analogue for the shovel
seen in Figure 9.11; we’ll use this virtual shovel to generate our virtual random samples of 50
balls. We’re going to use the rep_sample_n() function included in the moderndive package.
This function allows us to take repeated, or replicated, samples of size n. Run the following
and explore virtual_shovel’s contents in the RStudio viewer.

virtual_shovel <- bowl %>%
rep_sample_n(size = 50)

View(virtual_shovel)

293



Let’s display only the first 10 out of 50 rows of virtual_shovel’s contents in Table 9.3.

Table 9.3: First 10 sampled balls of 50 in virtual sample

Table 9.3: First 10 sampled balls of 50 in virtual sample

replicate ball_ID color
1 1970 white
1 842 red
1 2287 white
1 599 white
1 108 white
1 846 red
1 390 red
1 344 white
1 910 white
1 1485 white

The ball_ID variable identifies which of the balls from bowl are included in our sample of 50
balls and color denotes its color. However what does the replicate variable indicate? In
virtual_shovel’s case, replicate is equal to 1 for all 50 rows. This is telling us that these
50 rows correspond to a first repeated/replicated use of the shovel, in our case our first sample.
We’ll see below when we “virtually” take 10,000 samples, replicate will take values between
1 and 10,000. Before we do this, let’s compute the proportion of balls in our virtual sample
of size 50 that are red using the dplyr data wrangling verbs you learned in Chapter 3. Let’s
breakdown the steps individually:

First, for each of our 50 sampled balls, identify if it is red using a test for equality using
==. For every row where color == "red", the Boolean TRUE is returned and for every row
where color is not equal to "red", the Boolean FALSE is returned. Let’s create a new Boolean
variable is_red using the mutate() function from Section 3.5:

virtual_shovel %>%
mutate(is_red = (color == "red"))

# A tibble: 50 x 4
# Groups: replicate [1]

replicate ball_ID color is_red
<int> <int> <chr> <lgl>

1 1 1970 white FALSE
2 1 842 red TRUE
3 1 2287 white FALSE

294



4 1 599 white FALSE
5 1 108 white FALSE
6 1 846 red TRUE
7 1 390 red TRUE
8 1 344 white FALSE
9 1 910 white FALSE
10 1 1485 white FALSE
# i 40 more rows

Second, we compute the number of balls out of 50 that are red using the summarize() function.
Recall from Section 3.3 that summarize() takes a data frame with many rows and returns a
data frame with a single row containing summary statistics that you specify, like mean() and
median(). In this case we use the sum():

virtual_shovel %>%
mutate(is_red = (color == "red")) %>%
summarize(num_red = sum(is_red))

# A tibble: 1 x 2
replicate num_red

<int> <int>
1 1 12

Why does this work? Because R treats TRUE like the number 1 and FALSE like the number 0.
So summing the number of TRUE’s and FALSE’s is equivalent to summing 1’s and 0’s, which in
the end counts the number of balls where color is red. In our case, 12 of the 50 balls were
red.

Third and last, we compute the proportion of the 50 sampled balls that are red by dividing
num_red by 50:

virtual_shovel %>%
mutate(is_red = color == "red") %>%
summarize(num_red = sum(is_red)) %>%
mutate(prop_red = num_red / 50)

# A tibble: 1 x 3
replicate num_red prop_red

<int> <int> <dbl>
1 1 12 0.24

295



In other words, this “virtual” sample’s balls were 24% red. Let’s make the above code a
little more compact and succinct by combining the first mutate() and the summarize() as
follows:

virtual_shovel %>%
summarize(num_red = sum(color == "red")) %>%
mutate(prop_red = num_red / 50)

# A tibble: 1 x 3
replicate num_red prop_red

<int> <int> <dbl>
1 1 12 0.24

Great! 24% of virtual_shovel’s 50 balls were red! So based on this particular sample, our
guess at the proportion of the bowl’s balls that are red is 24%. But remember from our earlier
tactile sampling activity that if we repeated this sampling, we would not necessarily obtain
a sample of 50 balls with 24% of them being red again; there will likely be some variation.
In fact in Table 9.2 we displayed 33 such proportions based on 33 tactile samples and then
in Figure 9.14 we visualized the distribution of the 33 proportions in a histogram. Let’s now
perform the virtual analogue of having 10,000 students use the sampling shovel!

Using the virtual shovel 10,000 times

Recall that in our tactile sampling exercise in Subsection 9.2.2 we had 33 students each use
the shovel, yielding 33 samples of size 50 balls, which we then used to compute 33 propor-
tions. In other words we repeated/replicated using the shovel 33 times. We can perform
this repeated/replicated sampling virtually by once again using our virtual shovel function
rep_sample_n(), but by adding the reps = 10000 argument, indicating we want to repeat
the sampling 10,000 times. Be sure to scroll through the contents of virtual_samples in
RStudio’s viewer.

virtual_samples <- bowl %>%
rep_sample_n(size = 50, reps = 10000)

View(virtual_samples)

Observe that while the first 50 rows of replicate are equal to 1, the next 50 rows of replicate
are equal to 2. This is telling us that the first 50 rows correspond to the first sample of 50
balls while the next 50 correspond to the second sample of 50 balls. This pattern continues for
all reps = 10000 replicates and thus virtual_samples has 10,000 × 50 = 500,000 rows.

Let’s now take the data frame virtual_samples with 10,000 × 50 = 500,000 rows correspond-
ing to 10,000 samples of size 50 balls and compute the resulting 10,000 proportions red. We’ll
use the same dplyr verbs as we did in the previous section, but this time with an additional

296



group_by() of the replicate variable. Recall from Section 3.4 that by assigning the grouping
variable “meta-data” before summarizing(), we’ll obtain 10,000 different proportions red:

virtual_prop_red <- virtual_samples %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 50)

View(virtual_prop_red)

Let’s display only the first 10 out of 10,000 rows of virtual_prop_red’s contents in Table 9.4.
As one would expect, there is variation in the resulting prop_red proportions red for the first
10 out 10,000 repeated/replicated samples.

Table 9.4: First 10 out of 10,000 virtual proportion of 50 balls that are red.

Table 9.4: First 10 out of 33 virtual proportion of 50 balls that are red.

replicate red prop_red
1 23 0.46
2 19 0.38
3 18 0.36
4 19 0.38
5 15 0.30
6 21 0.42
7 21 0.42
8 16 0.32
9 24 0.48
10 14 0.28

Let’s visualize the distribution of these 10,000 proportions red based on 10,000 virtual samples
using a histogram with binwidth = 0.05 in Figure 9.16.

ggplot(virtual_prop_red, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red",

title = "Distribution of 10,000 proportions red")

Observe that every now and then, we obtain proportions as low as between 20% and 25%,
and others as high as between 55% and 60%. These are rare however. However, the most
frequently occurring proportions red out of 50 balls were between 35% and 40%. Why do we
have these differences in proportions red? Because of sampling variation.

297



0

1000

2000

3000

0.2 0.4 0.6
Proportion of 50 balls that were red

co
un

t

Distribution of 10,000 proportions red

Figure 9.16: Distribution of 10,000 proportions based on 10,000 samples of size 50

298



As a wrap up to this section, let’s reflect now on what we learned. First, we began with a
situation in which we know the right answer – that the true proportion of red balls in the bowl
(population) is 0.375 – and then we simulated drawing a random sample of size n = 50 balls
and estimating the proportion of balls that are red from this sample. We then repeated this
simulation another 9,999 times, each time randomly selecting a different sample and estimating
the population proportion from the sample data. At the end, we collected 10,000 estimates
of the proportion of balls that are red in the bowl (population) and created a histogram
showing the distribution of these estimates. Just as in the case with the 33 samples of balls
selected randomly by students (in Section 9.2), the resulting distribution indicates that there
is sampling variability – that is, that some of the estimates are bigger and others smaller
than the true proportion. In the next section, we will continue this discussion, providing new
language and concepts for summarizing this distribution.

9.3 Properties of Sampling Distributions

In the previous sections, you were introduced to sampling distributions via both an example
of a hands-on activity and one using computer simulation. In both cases, you explored the
idea that the sample you see in your data is one of many, many possible samples of data
that you could observe. To do so, you conducted a thought experiment in which you began
with a population parameter (the proportion of red balls) that you knew, and then simulated
10,000 different hypothetical random samples of the same size that you used to calculate
10,000 estimates of the population proportion. At the end, you produced a histogram of these
estimated values.

The histogram you produced is formally called a sampling distribution. While this is a
nice visualization, it is not particularly helpful to summarize this only with a figure. For this
reason, statisticians summarize the sampling distribution by answering three questions:

1. How can you characterize its distribution? (Also: Is it a known distribution?)
2. What is the average value in this distribution? How does that compare to the population

parameter?
3. What is the standard deviation of this distribution? What range of values are likely to

occur in samples of size 𝑛?

Hopefully you were able to see that in Figure 9.16 that the sampling distribution of ̂𝜋 follows a
Normal distribution. As a result of the Central Limit Theorem (CLT), when sample sizes are
large, most sampling distributions will be approximated well by a Normal Distribution. We
will discuss the CLT further in Section 9.6.

Throughout this section, it is imperative that you remember that this is a theoretical exercise.
By beginning with a situation in which we know the right answer, we will be able to deduce
properties of estimators that we can leverage in cases in which we do not know the right answer
(i.e., when you are conducting actual data analyses!).

299



9.3.1 Mean of the sampling distribution

If we were to summarize a dataset beyond the distribution, the first statistic we would likely
report is the mean of the distribution. This is true with sampling distributions as well. With
sampling distributions, however, we do not simply want to know what the mean is – we want
to know how similar or different this is from the population parameter value that the sample
statistic is estimating. Any difference in these two values is called bias. That is:

𝐵𝑖𝑎𝑠 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 − 𝑇 𝑟𝑢𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒

• A sample statistic is a biased estimator of a population parameter if its average value
is more or less than the population parameter it is meant to estimate.

• A sample statistic is an unbiased estimator of a population parameter if in the average
sample it equals the population parameter value.

We can calculate the mean of our simulated sampling distribution of proportion of red balls ̂𝜋
and compare it to the true population proportion 𝜋.

#mean of sampling distribution of pi_hat
virtual_prop_red %>%
summarize(mean_pi_hat = mean(prop_red))

# A tibble: 1 x 1
mean_pi_hat

<dbl>
1 0.375

#true population proportion
bowl %>%
summarize(pi = sum(color == "red") / n())

# A tibble: 1 x 1
pi

<dbl>
1 0.375

Here we see that ̂𝜋 = 0.375, which is a good approximation to the true proportion of red
balls in the bowl (𝜋 = 0.375). This is because the sample proportion ̂𝜋 = # 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

# 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 is an
unbiased estimator of the population proportion 𝜋.

300



The difficulty with introducing this idea of bias in an introductory course is that most statistics
used at this level (e.g., proportions, means, regression coefficients) are unbiased. Examples
of biased statistics are more common in more complex models. One example, however, that
illustrates this bias concept is that of sample variance estimator.

Recall that we have used standard deviation as a summary statistic for how spread out data
is. Variance is simply standard deviation squared, and thus it is also a measure of spread.
The sample standard deviation is usually denoted by the letter 𝑠, and sample variance by 𝑠2.
These are estimators for the population standard deviation (denoted 𝜎) and the population
variance (denoted 𝜎2). We estimate the sample variance using 𝑠2 = ∑𝑛

𝑖=1(𝑥𝑖−�̄�)2

(𝑛−1) , where 𝑛 is
the sample size (check out Appendix A if you are unfamiliar with the ∑ notation and using
subscripts 𝑖). When we use the sd() function in R, it is using the square root of this function

in the background: 𝑠 =
√

𝑠2 = √∑𝑛
𝑖=1(𝑥𝑖−�̄�)2

(𝑛−1) . Until now, we have simply used this estimator
without reason. You might ask: why is this divided by 𝑛–1 instead of simply by 𝑛 like the
formula for the mean (i.e. ∑ 𝑥𝑖

𝑛 )? To see why, let’s look at an example.

The gapminder dataset in the dslabs package has life expectancy data on 185 countries in
2016. We will consider these 185 countries to be our population. The true variance of life
expectancy in this population is 𝜎2 = 57.5.

data("gapminder", package = "dslabs")
gapminder_2016 <- filter(gapminder, year == 2016)
gapminder_2016 %>%
summarize(sigma2 = var(life_expectancy))

sigma2
1 57.5

Let’s draw 10,000 repeated samples of n = 5 countries from this population. The data for the
first 2 samples (replicates) is shown in Table 9.5.

samples <- rep_sample_n(gapminder_2016, size = 5, reps = 10000) %>%
select(replicate, country, year, life_expectancy, continent, region)

Table 9.5: Life expectancy data for 2 out of 10,000 samples of size n = 5 countries

Table 9.5: Life expectancy data for 2 out of 10,000 samples of size n = 5 countries

replicate country year life_expectancy continent region
1 Gambia 2016 68.2 Africa Western Africa

301



replicate country year life_expectancy continent region
1 Guyana 2016 67.2 Americas South America
1 Kenya 2016 65.2 Africa Eastern Africa
1 Moldova 2016 74.2 Europe Eastern Europe
1 Senegal 2016 65.6 Africa Western Africa
2 Djibouti 2016 64.5 Africa Eastern Africa
2 Aruba 2016 75.8 Americas Caribbean
2 Bhutan 2016 73.0 Asia Southern Asia
2 Lebanon 2016 79.1 Asia Western Asia
2 Cape Verde 2016 73.1 Africa Western Africa

We can then calculate the variance for each sample (replicate) using two different formulas:

1. 𝑠2
𝑛 = ∑(𝑥𝑖−�̄�)2

𝑛

2. 𝑠2 = ∑(𝑥𝑖−�̄�)2

(𝑛−1)

n <- 5
variances <- samples %>%
group_by(replicate) %>%
summarise(s2_n = sum((life_expectancy - mean(life_expectancy))^2) / n,

s2 = sum((life_expectancy - mean(life_expectancy))^2) / (n - 1))

Table 9.6: Sample variances of life expectancy for first 10 samples

Table 9.6: Sample variances of life expectancy for first 10 samples

replicate s2_n s2
1 10.54 13.2
2 23.47 29.3
3 38.71 48.4
4 9.59 12.0
5 18.16 22.7
6 72.46 90.6
7 59.76 74.7
8 34.65 43.3
9 27.85 34.8

10 13.32 16.6

Table 9.6 shows the results for the first 10 samples. Let’s look at the average of 𝑠2
𝑛 and 𝑠2

across all 10,000 samples.

302



variances %>%
summarize(mean_s2_n = mean(s2_n),

mean_s2 = mean(s2))

# A tibble: 1 x 2
mean_s2_n mean_s2

<dbl> <dbl>
1 45.9 57.4

Remember that the true value of the variance in this population is 𝜎2 = 57.5. We can see
that 𝑠2

𝑛 is biased; on average it is equal to 45.913. By dividing by 𝑛–1 instead of 𝑛, however,
the bias is removed; the average value of 𝑠2 = 57.391. Therefore we use 𝑠2 = ∑(𝑥𝑖−�̄�)2

(𝑛−1) as our
usual estimator for 𝜎2 because it is unbiased.

In Figure 9.17 we visualize the sampling distribution of 𝑠2
𝑛 and 𝑠2. The black dotted line

corresponds to the population variance (𝜎2), and we can see that the mean of the 𝑠2s line up
with it very well (blue vertical line), but on average the 𝑠2

𝑛s are an underestimate (red vertical
line).

ggplot(variances) +
geom_histogram(aes(x = s2_n, fill = "red"), color = "white", alpha = 0.5) +
geom_histogram(aes(x = s2, fill = "blue"), color = "white", alpha = 0.5) +
geom_vline(xintercept = mean(variances$s2_n), color = "red", size = 1) +
geom_vline(xintercept = mean(variances$s2), color = "blue", size = 1) +
geom_vline(xintercept = var(gapminder_2016$life_expectancy), linetype = 2, size = 1) +
scale_fill_manual(name="Estimator", values = c('blue' = 'blue', 'red' = 'red'),

labels = expression(s^2, s[n]^2)) +
xlab("Sample variance estimate") +
ylab("Number of samples")

303



0

500

1000

0 100 200
Sample variance estimate

N
um

be
r 

of
 s

am
pl

es

Estimator

s2

sn
2

Figure 9.17: Sample variance estimates for 10,000 samples of size n = 5

Notice that the sampling distribution of the sample variance shown in Figure 9.17 is not Normal
but rather is skewed right; in fact, it follows a chi-square distribution with 𝑛 − 1 degrees of
freedom.

9.3.2 Standard deviation of the sampling distribution

In Subsection 9.3.1 we mentioned that one desirable characteristic of an estimator is that it
be unbiased. Another desirable characteristic of an estimator is that it be precise. An
estimator is precise when the estimate is close to the average of its sampling distribution in
most samples. In other words, the estimates do not vary greatly from one (theoretical) sample
to another.

If we were analyzing a dataset in general, we might characterize this precision by a measure
of the distribution’s spread, such as the standard deviation. We can do this with sampling
distributions, too. The standard error of an estimator is the standard deviation of its
sampling distribution:

304



• A large standard error means that an estimate (e.g., in the sample you have) may be far
from the average of its sampling distribution. This means the estimate is imprecise.

• A small standard error means an estimate (e.g., in the sample you have) is likely to be
close to the average of its sampling distribution. This means the estimate is precise.

In statistics, we prefer estimators that are precise over those that are not. Again, this is
tricky to understand at an introductory level, since nearly all sample statistics at this level
can be proven to be the most precise estimators (out of all possible estimators) of the pop-
ulation parameters they are estimating. In more complex models, however, there are often
competing estimators, and statisticians spend time studying the behavior of these estimators
in comparison to one another.

Figure 9.18 illustrates the concepts of bias and precision. Note that an estimator can be
precise but also biased. That is, all of the estimates tend to be close to one another (i.e. the
sampling distribution has a small standard error), but they are centered around the wrong
average value. Conversely, it’s possible for an estimator to be unbiased (i.e. it’s centered around
the true population parameter value) but imprecise (i.e. large standard error, the estimates
vary quite a bit from one (theoretical) sample to another). Most of the estimators you use
in this class (e.g. ̄𝑥, 𝑠2, ̂𝜋) are both precise and unbiased, which is clearly the preferred set of
characteristics.

9.3.3 Confusing concepts

On one level, sampling distributions should seem straightforward and like simple extensions to
methods you’ve learned already in this course. That is, just like sample data you have in front
of you, we can summarize these sampling distributions in terms of their shape (distribution),
mean (bias), and standard deviation (standard error). But this similarity to data analysis is
exactly what makes this tricky.

It is imperative to remember that sampling distributions are inherently theoretical
constructs:

• Even if your estimator is unbiased, the number you see in your data (the value of the
estimator) may not be the value of the parameter in the population.

• The standard deviation is a measure of spread in your data. The standard error is
a property of an estimator across repeated samples.

• The distribution of a variable is something you can directly examine in your data. The
sampling distribution is a property of an estimator across repeated samples.

Remember, a sample statistic is a tool we use to estimate a parameter value in a population.
The sampling distribution tells us how good this tool is: Does it work on average (bias)?
Does it work most of the time (standard error)? Does it tend to over- or under- estimate
(distribution)?

305



Figure 9.18: Bias vs. Precision

306



9.4 Common statistics and their theoretical distributions

In the previous sections, we demonstrated that every statistic has a sampling distribution and
that this distribution is used to make inferences between a statistic (estimate) calculated in
a sample and its unknown (parameter) value in the population. For example, you now know
that the sample mean’s sampling distribution is a normal distribution and that the sample
variance’s sampling distribution is a chi-squared distribution.

9.4.1 Standard Errors based on Theory

In Subsection 9.3.2 we explained that the standard error gives you a sense of how far from the
average value an estimate might be in an observed sample. In simulations, you could see that
a wide distribution meant a large standard error, while a narrow distribution meant a small
standard error. We could see this relationship by beginning with a case in which we knew the
right answer (e.g., the population mean) and then simulating random samples of the same size,
estimating this parameter in each possible sample.

But we can be more precise than this. Using mathematical properties of the normal distribu-
tion, a formula can be derived for this standard error. For example, for the sample mean, the
standard error is,

𝑆𝐸( ̄𝑥) = 𝜎√𝑛 = 𝑠√𝑛,

where 𝑠 = √∑(𝑥𝑖–�̄�)2

𝑛–1 is the sample standard deviation.

Note that this standard error is a function of both the spread of the underlying data (the 𝑥𝑖’s)
and the sample size (𝑛). We will discuss more about the role of sample size in Section 9.5.

In Table 9.7 we provide properties of some estimators, including their standard errors, for
many common statistics. Note that this is not exhaustive – there are many more estimators in
the world of statistics, but the ones listed here are common and provide a solid introduction.

Table 9.7: Properties of Sample Statistics

Table 9.7: Properties of Sample Statistics

Statistic

Population
parame-
ter Estimator Biased?SE of estimator

Sampling
distribu-
tion

Proportion 𝜋 ̂𝜋 Unbiased√ �̂�(1−�̂�)
𝑛 Normal

Mean 𝜇 𝑥 or ̂𝜇 Unbiased𝑠√𝑛 T/Normal

307



Statistic

Population
parame-
ter Estimator Biased?SE of estimator

Sampling
distribu-
tion

Difference
in propor-
tions

𝜋1 − 𝜋2 ̂𝜋1 − ̂𝜋2 Unbiased√ �̂�1(1−�̂�1)
𝑛1

+ �̂�2(1−�̂�2)
𝑛2

Normal

Difference
in means

𝜇1 − 𝜇2 𝑥1 − 𝑥2 Unbiased√ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

T/Normal

Regression
intercept

𝛽0 𝑏0 or ̂𝛽0 Unbiased√𝑠2𝑦[ 1
𝑛 + �̄�2

(𝑛−1)𝑠2𝑥
] T/Normal

Regression
slope

𝛽1 𝑏1 or ̂𝛽1 Unbiased√ 𝑠2𝑦
(𝑛−1)𝑠2𝑥

T/Normal

Recall if the population standard deviation is unknown, we use 𝑠 and the sampling distribution
is the t-distribution. If the population standard deviation is known we replace the 𝑠’s in these
formulas with 𝜎′𝑠 and the sampling distribution is the Normal distribution.

The fact that there is a formula for this standard error means that we can know properties of
the sampling distribution without having to do a simulation and can use this knowledge
to make inferences. For example, let’s pretend we’re estimating a population mean, which we
don’t know. To do so, we take a random sample of the population and estimate the mean
( ̄𝑥 = 5.2) and standard deviation (𝑠 = 2.1) based upon 𝑛 = 10 observations. Now, looking at
Table 9.7, we know that the sample mean:

• Is an unbiased estimate of the population mean (so, on average, we get the right answer),
• That the sampling distribution is a t-distribution, and that
• The standard error (spread) of this distribution can be calculated as 𝑆𝐸( ̄𝑥) = 𝜎√𝑛 =

𝑠√𝑛 = 2.1√
10 = 0.664.

At this point, this is all you know, but in Chapters 10 - 12, we will put these properties to
good use.

9.5 Sample Size and Sampling Distributions

Let’s return to our football stadium thought experiment. Let’s say you could estimate the
average age of fans by selecting a sample of 𝑛 = 10 or by selecting a sample of 𝑛 = 100. Which
would be better? Why? A larger sample will certainly cost more – is this worth it? What
about a sample of 𝑛 = 500? Is that worth it?

308



This question of appropriate sample size drives much of statistics. For example, you might be
conducting an experiment in a psychology lab and ask: how many participants do I need to
estimate this treatment effect precisely? Or you might be conducting a survey and need to
know: how many respondents do I need in order to estimate the relationship between income
and education well?

These questions are inherently about how sample size affects sampling distributions, in general,
and in particular, how sample size affects standard errors (precision).

9.5.1 Sampling balls with different sized shovels

Returning to our ball example, now say instead of just one shovel, you had three choices of
shovels to extract a sample of balls with.

A shovel with 25 slots A shovel with 50 slots A shovel with 100 slots

If your goal was still to estimate the proportion of the bowl’s balls that were red, which shovel
would you choose? In our experience, most people would choose the shovel with 100 slots
since it has the biggest sample size and hence would yield the “best” guess of the proportion
of the bowl’s 2400 balls that are red. Using our newly developed tools for virtual sampling
simulations, let’s unpack the effect of having different sample sizes! In other words, let’s use
rep_sample_n() with size = 25, size = 50, and size = 100, while keeping the number of
repeated/replicated samples at 10,000:

1. Virtually use the appropriate shovel to generate 10,000 samples with size balls.
2. Compute the resulting 10,000 replicates of the proportion of the shovel’s balls that are

red.
3. Visualize the distribution of these 10,000 proportion red using a histogram.

Run each of the following code segments individually and then compare the three resulting
histograms.

309



# Segment 1: sample size = 25 ------------------------------
# 1.a) Virtually use shovel 10,000 times
virtual_samples_25 <- bowl %>%
rep_sample_n(size = 25, reps = 10000)

# 1.b) Compute resulting 10,000 replicates of proportion red
virtual_prop_red_25 <- virtual_samples_25 %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 25)

# 1.c) Plot distribution via a histogram
ggplot(virtual_prop_red_25, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 25 balls that were red", title = "25")

# Segment 2: sample size = 50 ------------------------------
# 2.a) Virtually use shovel 10,000 times
virtual_samples_50 <- bowl %>%
rep_sample_n(size = 50, reps = 10000)

# 2.b) Compute resulting 10,000 replicates of proportion red
virtual_prop_red_50 <- virtual_samples_50 %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 50)

# 2.c) Plot distribution via a histogram
ggplot(virtual_prop_red_50, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red", title = "50")

# Segment 3: sample size = 100 ------------------------------
# 3.a) Virtually using shovel with 100 slots 10,000 times
virtual_samples_100 <- bowl %>%
rep_sample_n(size = 100, reps = 10000)

# 3.b) Compute resulting 10,000 replicates of proportion red
virtual_prop_red_100 <- virtual_samples_100 %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 100)

310



# 3.c) Plot distribution via a histogram
ggplot(virtual_prop_red_100, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 100 balls that were red", title = "100")

For easy comparison, we present the three resulting histograms in a single row with matching
x and y axes in Figure 9.19. What do you observe?

25 50 100

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0

1000

2000

3000

4000

Proportion of shovel's balls that are red

co
un

t

Comparing distributions of proportions red for 3 different shovels.

Figure 9.19: Comparing the distributions of proportion red for different sample sizes

Observe that as the sample size increases, the spread of the 10,000 replicates of the proportion
red decreases. In other words, as the sample size increases, there are less differences due to
sampling variation and the distribution centers more tightly around the same value. Eyeballing
Figure 9.19, things appear to center tightly around roughly 40%.

We can be numerically explicit about the amount of spread in our 3 sets of 10,000 values of
prop_red by computing the standard deviation for each of the three sampling distributions.
For all three sample sizes, let’s compute the standard deviation of the 10,000 proportions red
by running the following data wrangling code that uses the sd() summary function.

311



# n = 25
virtual_prop_red_25 %>%
summarize(SE = sd(prop_red))

# n = 50
virtual_prop_red_50 %>%
summarize(SE = sd(prop_red))

# n = 100
virtual_prop_red_100 %>%
summarize(SE = sd(prop_red))

Let’s compare these 3 measures of spread of the distributions in Table 9.9.

Table 9.9: Comparing standard error of proportion red for 3 different shovels.

Table 9.9: Comparing standard error of proportion red for 3 different shovels.

Number of slots in shovel Standard error of proportion red
25 0.098
50 0.068

100 0.047

As we observed visually in Figure 9.19, as the sample size increases our numerical measure of
spread (i.e. our standard error) decreases; there is less variation in our proportions red. In
other words, as the sample size increases, our guesses at the true proportion of the bowl’s balls
that are red get more consistent and precise. Remember that because we are computing the
standard deviation of an estimator ̂𝜋’s sampling distribution, we call this the standard error
of ̂𝜋.
Overall, this simulation shows that compared to a smaller sample size (e.g., 𝑛 = 10), with
a larger sample size (e.g., 𝑛 = 100), the sampling distribution has less spread and a smaller
standard error. This means that an estimate from a larger sample is likely closer to the
population parameter value than one from a smaller sample.

Note that this is exactly what we would expect by looking at the standard error formulas in
Table 9.7. Sample size 𝑛 appears in some form on the denominator in each formula, and we
know by simple arithmetic that dividing by a larger number causes the calculation to result in
a smaller value. Therefore it is a general mathematical property that increasing sample size
will decrease the standard error.

312



9.6 Central Limit Theorem (CLT)

There is a very useful result in statistics called the Central Limit Theorem which tells
us that the sampling distribution of the sample mean is well approximated by the normal
distribution. While not all variables follow a normal distribution, many estimators have sam-
pling distributions that are normal. We have already seen this to be true with the sample
proportion.

More formally, the CLT tells us that

̄𝑥 ∼ 𝑁(𝑚𝑒𝑎𝑛 = 𝜇, 𝑆𝐸 = 𝜎√𝑛),

where 𝜇 is the population mean of X, 𝜎 is the population standard deviation of X, and 𝑛 is
the sample size.

Note that we if we standardize the sample mean, it will follow the standard normal distribution.
That is:

𝑆𝑇 𝐴𝑇 = ̄𝑥 − 𝜇
𝜎√𝑛

∼ 𝑁(0, 1)
.

9.6.1 CLT conditions

Certain conditions must be met for the CLT to apply:

Independence: Sampled observations must be independent. This is difficult to verify, but is
more likely if

• random sampling / assignment is used, and
• Sample size n < 10% of the population

Sample size / skew: Either the population distribution is normal, or if the population
distribution is skewed, the sample size is large.

• the more skewed the population distribution, the larger sample size we need for the CLT
to apply

• for moderately skewed distributions n > 30 is a widely used rule of thumb.

This is also difficult to verify for the population, but we can check it using the sample data,
and assume that the sample mirrors the population.

313



9.6.2 CLT example

Let’s return to the gapminder dataset, this time looking at the variable infant_mortality.
We’ll first subset our data to only include the year 2015, and we’ll exclude the 7 coun-
tries that have missing data for infant_mortality. Figure 9.20 shows the distribution of
infant_mortality, which is skewed right.

data("gapminder", package = "dslabs")
gapminder_2015 <- gapminder %>%
filter(year == 2015, !is.na(infant_mortality))

ggplot(gapminder_2015) +
geom_histogram(aes(x = infant_mortality), color = "black") +
xlab("Infant mortality per 1,000 live births") +
ylab("Number of countries")

0

10

20

30

0 25 50 75 100
Infant mortality per 1,000 live births

N
um

be
r 

of
 c

ou
nt

rie
s

Figure 9.20: Infant mortality rates per 1,000 live births across 178 countries in 2015

Let’s run 3 simulations where we take 10,000 samples of size 𝑛 = 5, 𝑛 = 30 and 𝑛 = 100 and
plot the sampling distribution of the mean for each.

314



sample_5 <- rep_sample_n(gapminder_2015, size = 5, reps = 10000) %>%
group_by(replicate) %>%
summarise(mean_infant_mortality = mean(infant_mortality)) %>%
mutate(n = 5)

sample_30 <- rep_sample_n(gapminder_2015, size = 30, reps = 10000) %>%
group_by(replicate) %>%
summarise(mean_infant_mortality = mean(infant_mortality)) %>%
mutate(n = 30)

sample_100 <- rep_sample_n(gapminder_2015, size = 100, reps = 10000) %>%
group_by(replicate) %>%
summarise(mean_infant_mortality = mean(infant_mortality)) %>%
mutate(n = 100)

all_samples <- bind_rows(sample_5, sample_30, sample_100)

ggplot(all_samples) +
geom_histogram(aes(x = mean_infant_mortality), color = "white", bins = 50) +
facet_wrap(~n, ncol = 1, scales = "free_y") +
xlab("Mean infant mortality") +
ylab("Number of samples")

315



100

30

5

0 20 40 60

0

200

400

0

500

1000

0

1000

2000

3000

Mean infant mortality

N
um

be
r 

of
 s

am
pl

es

Figure 9.21: Sampling distributions of the mean infant mortality for various sample sizes

Figure 9.21 shows that for samples of size 𝑛 = 5, the sampling distribution is still skewed
slightly right. However, with even a moderate sample size of 𝑛 = 30, the Central Limit
Theorem kicks in, and we see that the sampling distribution of the mean ( ̄𝑥) is normal, even
though the underlying data was skewed. We again see that the standard error of the estimate
decreases as the sample size increases.

Overall, this simulation shows that not only might the precision of an estimate differ as a
result of a larger sample size, but also the sampling distribution might be different for a
smaller sample size (e.g., 𝑛 = 5) than for a larger sample size (e.g., 𝑛 = 100).

9.7 Conclusion

In this chapter, you’ve been introduced to the theory of repeated sampling that undergirds
our ability to connect estimates from samples to parameters from populations that we wish
to know about. In order to make these inferences, we need to understand how our results
might change if – in a different reality – a different random sample was collected, or, more
generally, how our results might differ across the many, many possible random samples we

316



could have drawn. This led us to simulate the sampling distribution for our estimator of
the population proportion.

You also learned that statisticians summarize this sampling distribution in three ways. We
showed that for the population proportion:

1. The sampling distribution of the sample proportion is symmetric, unimodal, and follows
a normal distribution (when n = 50),

2. The sample proportion is an unbiased estimate of the population proportion, and
3. The sample proportion does not always equal the population proportion, i.e., there is

some sampling variability, making it not uncommon to see values of the sample pro-
portion larger or smaller than the population proportion.

In the next section of the book, we will build upon this theoretical foundation, developing
approaches – based upon these properties – that we can use to make inferences from the
sample we have to the population we wish to know about.

9.8 Exercises

9.8.1 Conceptual

Exercise 9.1. Which of the following properties do the Normal distribution and the T distri-
bution share? Select all that apply.

a) depends on degrees of freedom
b) unimodal
c) bimodal
d) multimodal
e) uniform
f) right skewed
g) left skewed
h) symmetric

Exercise 9.2. Standardization is a useful statistical tool as it allows us to put measures that
are on the same scale onto different scales.

a) True
b) False

Exercise 9.3. The average height of women in the U.S. is normally distributed with a mean
height of 64 inches and a population standard deviation of 3 inches. Which of the following
will compute the percent of women that are shorter than 60 inches?

317



a) qnorm(p = 60, mean = 64, sd = 3)
b) pnorm(q = 60, mu = 64, sigma = 3)
c) 1 - pnorm(q = 60, mean = 64, sd = 3, lower.tail = FALSE)
d) qnorm(p = 60, mean = 64, sd = 3, lower.tail = FALSE)
e) pnorm(q = 64, mean = 60, sd = 3)

Exercise 9.4. The average height of women in the U.S. is normally distributed with a mean
height of 64 inches and a population standard deviation of 3 inches. Which of the following
will compute the percent of women between 60 and 72 inches? Select all that apply.

a) pnorm(q = -1.33) - pnorm(q = 2.67)
b) pnorm(q = 72, mean = 64, sd = 3) - pnorm(q = 60, mean = 64, sd = 3)
c) 1 - pnorm(q = -1.33) - pnorm(q = 2.67, lower.tail = FALSE)
d) pnorm(q = 60, mean = 64, sd = 3) + pnorm(q = 72, mean = 64, sd = 3,

lower.tail = FALSE)
e) 1 - 2*pnorm(q = 60, mean = 64, sd = 3)

Exercise 9.5. Suppose we want to compare apples to oranges. Specifically, let’s compare
their weights. Apples are known to follow a normal distribution with a mean weight of 100
grams and standard deviation of 15 grams. Oranges are known to follow a normal distribution
with a mean weight of 140 grams and standard deviation of 25 grams.

You have an apple that weighs 110 grams and your sister has an orange that weighs 160 grams.
She claims her orange is bigger than your apple. But you state that is not a fair comparison
because you think your apple is big compared to other apples. Who’s fruit is bigger when
measured on a standardized scale?

a) apple
b) orange

Exercise 9.6. When n is at least 50, the sampling distribution of the sample proportion
follows a Normal distribution, and so it is both symmetric and unimodal.

a) True
b) False

Exercise 9.7. Which of the following statements regarding sample statistics are true? Select
all that apply.

a) All sample statistics are biased estimators of the population parameter
b) The sampling distribution of the sample proportion and the sampling distribution of the

difference in proportions both follow the T distribution
c) The sampling distribution of the sample proportion and the sampling distribution of the

difference in proportions both follow the Chi-Squared Distribution

318



d) The sampling distribution of the sample mean and the sampling distribution of the
difference in sample means both follow the T distribution

e) The sampling distribution of the sample mean and the sampling distribution of the
difference in sample means both follow the Chi-Squared distribution

f) The regression slope and regression intercept both follow the T distribution
g) The regression slope and regression intercept both follow the Chi-Squared distribution

Exercise 9.8. The distribution of the population will always have a larger spread than the
distribution of a sampling distribution.

a) True
b) False

Exercise 9.9. As sample size (n) increases the spread of the distribution also increases.

a) True
b) False

Exercise 9.10. Which of the following describes the estimator ̄(𝑥)?

a) biased and imprecise
b) biased and precise
c) unbiased and imprecise
d) unbiased and precise

Exercise 9.11. Proportions are an unbiased statistic, so any proportion will give you the
exact value of the population parameter
𝑝𝑖.

a) True
b) False

Exercise 9.12. Every statistic has a sampling distribution. What is the sampling distribution
of a…

• sample mean?
• sample proportion?
• sample variance?

319



9.8.2 Application

Exercise 9.13. It is found that the average male adult shoe size is normally distributed with
a mean of size 10.5 and standard deviation of 1.5.

a) Using the empirical rule, approximately what percent of men have a shoe size between
6 and 15?

b) What percent of men have a shoe size larger than 13?
c) You walk up to a random male, what is the probability his shoe size is between 10 and

12?
d) A male has a shoe size in the 60th percentile (ie: shoe size is larger than 60% of men).

What is his shoe size?

Exercise 9.14. You are a chef at a steakhouse restaurant that serves 6oz filets. When prepar-
ing filets there is some variability in the actual weight of each filet served. You prepare 18
filets and measure their average weight to be 6.02oz with a standard deviation of 0.03oz. The
distribution appears to be bell shaped.

a) What percent of filets are prepared under the advertised weight of 6oz?
b) A filet is considered large if it is in the top 10%. What is the weight of a large filet?
c) The company has a high standard of excellence and will not serve a filet if it is under

5.95oz or over 6.05oz. What percent of filet’s are not served?

9.8.3 Advanced

Exercise 9.15. You work for a weather company and are tasked with determining the pro-
portion of days that are sunny in a town with a mixed variety of weather conditions. You are
provided with a data frame (weather) containing weather descriptors (daily_weather) for
each day for the last six years.

weather <- tibble(
daily_weather = c(rep("sunny",476),

rep("cloudy",558),
rep("partly cloudy",487),
rep("rainy",312),
rep("thuderstorms",28),
rep("snowy",329))

)

a) Use repeated sampling to collect 50 samples of size 30. Store this as samples_1.
b) Use repeated sampling to collect 5,000 samples of size 30. Store this as samples_2.
c) Use repeated sampling to collect 5,000 samples of size 50. Store this as samples_3.

320



Then calculate the proportion of sunny days by replicate for each sample.

Plot the sampling distribution of each using a histogram.

Compare and contrast the three repeated samples, were they biased? Were they precise? Etc.

321



Part V

Statistical Inference

322



10 Confidence Intervals

In Chapter 9, we developed a theory of repeated samples. But what does this mean for
your data analysis? If you only have one sample in front of you, how are you supposed to
understand properties of the sampling distribution and your estimators? In this chapter we
use the mathematical theory we introduced in Sections 9.4 - 9.6 to tackle this question.

Needed Packages

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(moderndive)
library(dslabs)
library(infer)
library(janitor)

10.1 Combining an estimate with its precision

A confidence interval gives a range of plausible values for a parameter. It allows us to
combine an estimate (e.g. ̄𝑥) with a measure of its precision (i.e. its standard error). Confidence
intervals depend on a specified confidence level (e.g. 90%, 95%, 99%), with higher confidence
levels corresponding to wider confidence intervals and lower confidence levels corresponding to
narrower confidence intervals.

Usually we don’t just begin sections with a definition, but confidence intervals are simple to
define and play an important role in the sciences and any field that uses data.

You can think of a confidence interval as playing the role of a net when fishing. Using a single
point-estimate to estimate an unknown parameter is like trying to catch a fish in a murky lake
with a single spear, and using a confidence interval is like fishing with a net. We can throw a
spear where we saw a fish, but we will probably miss. If we toss a net in that area, we have
a good chance of catching the fish. Analogously, if we report a point estimate, we probably
won’t hit the exact population parameter, but if we report a range of plausible values based
around our statistic, we have a good shot at catching the parameter.

323



10.1.1 Sampling distributions of standardized statistics

In order to construct a confidence interval, we need to know the sampling distribution of a
standardized statistic. We can standardize an estimate by subtracting its mean and dividing
by its standard error:

𝑆𝑇 𝐴𝑇 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑀𝑒𝑎𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)
𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

While we have seen that the sampling distribution of many common estimators are normally
distributed (see Table 9.7), this is not always the case for the standardized estimate computed
by 𝑆𝑇 𝐴𝑇 . This is because the standard errors of many estimators, which appear on the
denominator of 𝑆𝑇 𝐴𝑇 , are a function of an additional estimated quantity – the sample variance
𝑠2. When this is the case, the sampling distribution for STAT is a t-distribution with a
specified degrees of freedom (df). Table 10.1 shows the distribution of the standardized
statistics for many of the common statistics we have seen previously.

Table 10.1: Properties of Sample Statistics

Table 10.1: Properties of Sample Statistics

Statistic

Population
pa-
rame-
ter Estimator Standardized statistic

Sampling
distribution of
standardized
statistic

Proportion𝜋 ̂𝜋 �̂�−𝜋
√ �̂�(1−�̂�)

𝑛
𝑁(0, 1)

Mean 𝜇 𝑥 or ̂𝜇 �̄�−𝜇
𝑠√𝑛

𝑡(𝑑𝑓 = 𝑛 − 1)
Difference
in
propor-
tions

𝜋1 −
𝜋2

̂𝜋1 − ̂𝜋2
(�̂�1−�̂�2)−(𝜋1−𝜋2)

√ �̂�1(1−�̂�1)
𝑛1 + �̂�2(1−�̂�2)

𝑛2

𝑁(0, 1)

Difference
in
means

𝜇1 −
𝜇2

𝑥1 − 𝑥2
(�̄�1−�̄�2)−(𝜇1−𝜇2)

√ 𝑠2
1

𝑛1 + 𝑠2
2

𝑛2

𝑡(𝑑𝑓 =
𝑚𝑖𝑛(𝑛1 −
1, 𝑛2 − 1))

Regression
inter-
cept

𝛽0 𝑏0 or ̂𝛽0
𝑏0− ̂𝛽0

√𝑠2𝑦[ 1
𝑛 + �̄�2

(𝑛−1)𝑠2𝑥
]

𝑡(𝑑𝑓 = 𝑛 − 2)

Regression
slope

𝛽1 𝑏1 or ̂𝛽1
𝑏1−𝛽1

√ 𝑠2𝑦
(𝑛−1)𝑠2𝑥

𝑡(𝑑𝑓 = 𝑛 − 2)

If in fact the population standard variance was known and didn’t have to be estimated, we

324



could replace the 𝑠2’s in these formulas with 𝜎2’s, and the sampling distribution of 𝑆𝑇 𝐴𝑇
would follow a 𝑁(0, 1) distribution.

10.1.2 Confidence Interval with the Normal distribution

If the sampling distribution of a standardized statistic is normally distributed, then we can
use properties of the standard normal distribution to create a confidence interval. Recall that
in the standard normal distribution:

• 90% of values are between -1.645 and +1.645.
• 95% of the values are between -1.96 and +1.96.
• 99% of values are between -2.575 and +2.575

90%
0.0

0.1

0.2

0.3

0.4

−3.00 −1.65 0.00 1.65 3.00
x

y

95%
0.0

0.1

0.2

0.3

0.4

−3.00 −1.96 0.00 1.96 3.00
x

y

99%
0.0

0.1

0.2

0.3

0.4

−3.00−2.58 0.00 2.583.00
x

y

Figure 10.1: N(0,1) 95% cutoff values

Using this, we can define a 95% confidence interval for a population parameter as,

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ± 1.96 ∗ 𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒),
or written in interval notation as

[𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 – 1.96 ∗ 𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒), 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 1.96 ∗ 𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)]

325



For example, a 95% confidence interval for the population mean 𝜇 can be constructed based
upon the sample mean as,

[ ̄𝑥 − 1.96 𝜎√𝑛, ̄𝑥 + 1.96 𝜎√𝑛],

when the population standard deviation is known. We will show later on in this section how
to construct a confidence interval for the mean using a t-distribution when the population
standard deviation is unknown.

Let’s return to our football fan example. Imagine that we have data on the population of 40,000
fans, their ages and whether or not they are cheering for the home team. This simulated data
exists in the data frame football_fans.

football_fans <- data.frame(home_fan = rbinom(40000, 1, 0.91),
age = rnorm(40000, 30, 8)) %>%

mutate(age = case_when(age < 0 ~ 0,
age >=0 ~ age))

We see that the average age in this population is 𝜇 = 30.064 and the standard deviation is
𝜎 = 8.017.

football_fans %>%
summarize(mu = mean(age),

sigma = sd(age))

mu sigma
1 30.1 8.02

Let’s take a sample of 100 fans from this population and compute the average age, ̄𝑥 and its
standard error 𝑆𝐸( ̄𝑥).

sample_100_fans <- football_fans %>%
sample_n(100)

mean_age_stats <- sample_100_fans %>%
summarize(n = n(),

xbar = mean(age),
sigma = sd(football_fans$age),
SE_xbar = sigma/sqrt(n))

mean_age_stats

n xbar sigma SE_xbar
1 100 29.7 8.02 0.802

326



Because the population standard deviation is known and therefore the standarized mean follows
a 𝑁(0, 1) distribution, we can construct a 95% confidence interval for ̄𝑥 by

29.7 ± 1.96 ∗ 8.02√
100,

which results in the interval [28.1, 31.3].

CI <- mean_age_stats %>%
summarize(lower = xbar - 1.96*SE_xbar,

upper = xbar + 1.96*SE_xbar)
CI

lower upper
1 28.1 31.3

A few properties are worth keeping in mind:

• This interval is symmetric. This symmetry follows from the fact that the normal dis-
tribution is a symmetric distribution. If the sampling distribution does not follow the
normal or t-distributions, the confidence interval may not be symmetric.

• The multiplier 1.96 used in this interval corresponding to 95% comes directly from proper-
ties of the normal distribution. If the sampling distribution is not normal, this multiplier
might be different. For example, this multiplier is larger when the distribution has heavy
tails, as with the t-distribution. The multiplier will also be different if you want to use
a level of confidence other than 95%. We will discuss this further in the next section.

• Rather than simply reporting our sample mean ̄𝑥 = 29.7 as a single value, reporting a
range of values via a confidence interval takes into account the uncertainty associated
with the fact that we are observing a random sample and not the whole population. We
saw in Chapter 9 that there is sampling variation inherent in taking random samples, and
that (even unbiased) estimates will not be exactly equal to the population parameter in
every sample. We know how much uncertainty/sampling variation to account for in our
confidence intervals because we have known formulas for the sampling distributions of
our estimators that tell us how much we expect these estimates to vary across repeated
samples.

10.1.3 General Form for Constructing a Confidence Interval

In general, we construct a confidence interval using what we know about an estimator’s stan-
dardized sampling distribution. Above, we used the multiplier 1.96 because we know that �̄�−𝜇

𝜎√𝑛
follows a standard Normal distribution, and we wanted our “level of confidence” to be 95%.
Note that the multiplier in a confidence interval, often called a critical value, is simply a

327



cutoff value from either the 𝑡 or standard normal distribution that corresponds to the desired
level of confidence for the interval (e.g. 90%, 95%, 99%).

In general, a confidence interval is of the form:

Estimate ± Critical Value ∗ 𝑆𝐸(Estimate)

In order to construct a confidence interval you need to:

1. Calculate the estimate from your sample
2. Calculate the standard error of your estimate (using formulas found in Table 9.7)
3. Determine the appropriate sampling distribution for your standardized estimate (usually

𝑡(𝑑𝑓) or 𝑁(0, 1). Refer to Table 10.1)
4. Determine your desired level of confidence (e.g. 90%, 95%, 99%)
5. Use 3 and 4 to determine the correct critical value

10.1.4 Finding critical values

Suppose we have a sample of 𝑛 = 20 and are using a t-distribution to construct a 95%
confidence interval for the mean. Remember that the t-distribution is characterized by its
degrees of freedom; here the appropriate degrees of freedom are 𝑑𝑓 = 𝑛 − 1 = 19. We can find
the appropriate critical value using the qt() function in R. Recall that in order for 95% of the
data to fall in the middle, this means that 2.5% of the data must fall in each tail, respectively.
We therefore want to find the critical value that has a probability of 0.025 to the left (i.e. in
the lower tail).

qt(p = .025, df = 19, lower.tail = TRUE)

[1] -2.09

Note that because the t-distribution is symmetric, we know that the upper cutoff value will be
+2.09 and therefore it’s not necessary to calculate it separately. For demonstration purposes,
however, we’ll show how to calculate it in two ways in R: by specifying that we want the value
that gives 2.5% in the upper tail (i.e. lower.tail = FALSE) or by specifying that we want the
value that gives 97.5% in the lower tail. Note these two are logically equivalent.

qt(p = .025, df = 19, lower.tail = FALSE)

[1] 2.09

328



qt(p = .975, df = 19, lower.tail = TRUE)

[1] 2.09

Importantly, changing the degrees of freedom (by having a different sample size) will change
the critical value for the t-distribution. For example, if instead we have 𝑛 = 50, the correct
critical value would be ±2.01. The larger the sample size for the t-distribution, the closer the
critical value gets to the corresponding critical value in the N(0,1) distribution (in the 95%
case, 1.96).

qt(p = .025, df = 49)

[1] -2.01

Recall that the critical values for 99%, 95%, and 90% confidence intervals for the 𝑁(0, 1) are
given by ±2.575, ±1.96,and ±1.645 respectively. These are likely numbers you will memorize
from using frequently, but they can also be calculated using the rnorm() function in R.

qnorm(.005) #99% (i.e. 0.5% in each tail)

[1] -2.58

qnorm(.025) #95% (i.e. 2.5% in each tail)

[1] -1.96

qnorm(.05) #90% (i.e. 5% in each tail)

[1] -1.64

10.1.5 Example

Returning to our football fans example, let’s assume we don’t know the true population stan-
dard deviation 𝜎, but instead we have to estimate it by 𝑠, the standard deviation calculated
in our sample. This means we need to calculate 𝑆𝐸( ̄𝑥) using 𝑠√𝑛 instead of 𝜎√𝑛 .

329



mean_age_stats_unknown_sd <- sample_100_fans %>%
summarize(n = n(),

xbar = mean(age),
s = sd(age),
SE_xbar = s/sqrt(n))

mean_age_stats_unknown_sd

n xbar s SE_xbar
1 100 29.7 7.78 0.778

In this case, we should use the t-distribution to construct our confidence interval because -
refering back to Table 10.1 - we know �̄�−𝜇

𝑠√𝑛
∼ 𝑡(𝑑𝑓 = 𝑛 − 1). Recall that we took a sample of

size 𝑛 = 100, so our degrees of freedom here are 𝑑𝑓 = 99, and the appropriate critical value
for a 95% confidence interval is -1.984.

qt(p = .025, df = 99)

[1] -1.98

Therefore, our confidence interval is given by

29.7 ± 1.98 ∗ 7.78√
100,

which results in the interval [28.1, 31.2].

CI <- mean_age_stats_unknown_sd %>%
summarize(lower = xbar - 1.98*SE_xbar,

upper = xbar + 1.98*SE_xbar)
CI

lower upper
1 28.1 31.2

330



10.2 Interpreting a Confidence Interval

Like many statistics, while a confidence interval is fairly straightforward to construct, it is
very easy to interpret incorrectly. In fact, many researchers – statisticians included – get the
interpretation of confidence intervals wrong. This goes back to the idea of counterfactual
thinking that we introduced previously: a confidence interval is a property of a population
and estimator, not a particular sample. It asks: if I constructed this interval in every possible
sample, in what percentage of samples would I correctly include the true population parameter?
For a 99% confidence interval, this answer is 99% of samples; for a 95% confidence interval,
the answer is 95% of samples, etc.

To see this, let’s return to the football fans example and consider the sampling distribution of
the sample mean age. Recall that we have population data for all 40,000 fans. Below we take
10,000 repeated samples of size 100 and display the sampling distribution of the sample mean
in Figure 10.2. Recall that the true population mean is 30.064

samples_football_fans <- football_fans %>%
rep_sample_n(size = 100, reps = 10000)

samp_means_football_fans <- samples_football_fans %>%
group_by(replicate) %>%
summarise(xbar = mean(age),

sigma = sd(football_fans$age),
n = n(),
SE_xbar = sigma / sqrt(n))

samp_dist_plot <-
ggplot(samp_means_football_fans) +

geom_histogram(aes(x = xbar), color = "white") +
geom_vline(xintercept = mean(football_fans$age), color = "blue")

samp_dist_plot

331



0

300

600

900

28 30 32
xbar

co
un

t

Figure 10.2: Sampling Distribution of Average Age of Fans at a Football Game

Assume that the sample we actually observed was replicate = 77, which had ̄𝑥 = 29.7. If we
used this sample mean to construct a 95% confidence interval, the population mean would be
in this interval, right? Figure 10.3 shows a confidence interval shaded around ̄𝑥 = 29.7, which
is indicated by the red line. This confidence interval successfully includes the true population
mean.

CI <- samp_means_football_fans %>%
filter(replicate == 77) %>%
summarize(lower = xbar - 1.96*SE_xbar,

upper = xbar + 1.96*SE_xbar)
CI

# A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 28.1 31.2

332



xbar <- samp_means_football_fans %>%
filter(replicate == 77) %>%
select(xbar) %>%
as.numeric()

samp_dist_plot +
shade_ci(CI) +
geom_vline(xintercept = xbar, color = "red")

0

300

600

900

28 30 32
xbar

y

Figure 10.3: Confidence Interval shaded for an observed sample mean of 29.8

Assume now that we were unlucky and drew a sample with a mean far from the population
mean. One such case is replicate = 545, which had ̄𝑥 = 32.3. In this case, is the population
mean in this interval? Figure 10.4 displays this scenario.

CI <- samp_means_football_fans %>%
filter(replicate == 545) %>%
summarize(lower = xbar - 1.96*SE_xbar,

333



upper = xbar + 1.96*SE_xbar)
CI

# A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 30.7 33.8

xbar <- samp_means_football_fans %>%
filter(replicate == 545) %>%
select(xbar) %>%
as.numeric()

samp_dist_plot +
shade_ci(CI) +
geom_vline(xintercept = xbar, color = "red")

0

300

600

900

1200

28 30 32 34
xbar

y

Figure 10.4: Confidence Interval shaded for an observed sample mean of 32.3

334



In this case, the confidence interval does not include the true population mean. Importantly,
remember that in real life we only have the data in front of us from one sample. We don’t
know what the population mean is, and we don’t know if our estimate is the value near to the
mean (Figure 10.3) or far from the mean (Figure 10.4). Also recall replicate = 545 was a
legitimate random sample drawn from the population of 40,000 football fans. Just by chance,
it is possible to observe a sample mean that is far from the true population mean.

We could compute 95% confidence intervals for all 10,000 of our repeated samples, and we
would expect approximately 95% of them to contain the true mean; this is the definition of
what it means to be “95% confident” in statistics. Another way to think about it, when
constructing 95% confidence intervals, we expect that we’ll only end up with an “unlucky”
sample- that is, a sample whose mean is far enough from the population mean such that the
confidence interval doesn’t capture it - just 5% of the time.

For each of our 10,000 samples, let’s create a new variable captured_95 to indicate whether
the true population mean 𝜇 is captured between the lower and upper values of the confidence
interval for the given sample. Let’s look at the results for the first 5 samples.

mu <- football_fans %>%
summarize(mean(age)) %>%
as.numeric()

CIs_football_fans <- samp_means_football_fans %>%
mutate(lower = xbar - 1.96*SE_xbar,

upper = xbar + 1.96*SE_xbar,
captured_95 = lower <= mu & mu <= upper)

CIs_football_fans %>%
slice(1:5)

# A tibble: 5 x 8
replicate xbar sigma n SE_xbar lower upper captured_95

<int> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <lgl>
1 1 30.7 8.02 100 0.802 29.2 32.3 TRUE
2 2 29.7 8.02 100 0.802 28.2 31.3 TRUE
3 3 29.5 8.02 100 0.802 28.0 31.1 TRUE
4 4 30.7 8.02 100 0.802 29.1 32.2 TRUE
5 5 30.2 8.02 100 0.802 28.6 31.7 TRUE

We see that each of the first 5 confidence intervals do contain 𝜇. Let’s look across all 10,000
confidence intervals (from our 10,000 repeated samples), and see what proportion contain 𝜇.

335



CIs_football_fans %>%
summarize(sum(captured_95)/n())

# A tibble: 1 x 1
`sum(captured_95)/n()`

<dbl>
1 0.951

In fact, 95.06% of the 10,000 do capture the true mean. If we were to take an infinite number
of repeated samples, we would see this number approach exactly 95%.

For visualization purposes, we’ll take a smaller subset of 100 of these confidence intervals and
display the results in Figure 10.5. In this smaller subset, 96 of the 100 95% confidence intervals
contain the true population mean.

CI_subset <- sample_n(CIs_football_fans, 100) %>%
mutate(replicate_id = seq(1:100))

ggplot(CI_subset) +
geom_point(aes(x = xbar, y = replicate_id, color = captured_95)) +
geom_segment(aes(y = replicate_id, yend = replicate_id, x = lower, xend = upper,

color = captured_95)) +
labs(x = expression("Age"),

y = "Replicate ID",
title = expression(paste("95% percentile-based confidence intervals for ",

mu, sep = ""))) +
scale_color_manual(values = c("blue", "orange")) +
geom_vline(xintercept = mu, color = "red")

336



0

25

50

75

100

26 28 30 32 34
Age

R
ep

lic
at

e 
ID captured_95

FALSE

TRUE

95% percentile−based confidence intervals for µ

Figure 10.5: Confidence Interval for Average Age from 100 repeated samples of size 100

What if we instead constructed 90% confidence intervals? That is, we instead used 1.645 as
our critical value instead of 1.96.

CIs_90_football_fans <- samp_means_football_fans %>%
mutate(lower = xbar - 1.645*SE_xbar,

upper = xbar + 1.645*SE_xbar,
captured_90 = lower <= mu & mu <= upper)

CIs_90_football_fans %>%
summarize(sum(captured_90)/n())

# A tibble: 1 x 1
`sum(captured_90)/n()`

<dbl>
1 0.901

As expected, when we use the 90% critical value, approximately 90% of the confidence intervals
contain the true mean. Note that because we are using a smaller multiplier (1.645 vs. 1.96),

337



our intervals are narrower, which makes it more likely that some of our intervals will not
capture the true mean. Think back to the fishing analogy: you will probably capture the fish
fewer times when using a small net versus a large net.

10.3 Margin of Error and Width of an Interval

Recall that we said in general, a confidence interval is of the form:

Estimate ± Critical Value ∗ 𝑆𝐸(Estimate)

The second element of the confidence interval (Critical Value ∗ 𝑆𝐸(Estimate) is often called
the margin of error. Therefore, another general way of writing the confidence interval is

Estimate ± Margin of Error

Note that as the margin of error decreases, the width of the interval also decreases. But what
makes the margin of error decrease? We’ve already discussed one way: by decreasing the level
of confidence. That is, using a lower confidence level (e.g. 90% instead of 95%) will decrease
the critical value (e.g. 1.645 instead of 1.96) and thus result in a smaller margin of error and
narrower confidence interval.

There is a trade-off here between the width of an interval and the level of confidence. In general
we might think narrower intervals are preferrable to wider ones, but by narrowing your interval,
you are increasing the chance that your interval will not capture the true mean. That is, a
90% confidence interval is narrower than a 95% confidence interval, but it has a 10% chance
of missing the mean as opposed to just a 5% chance of missing it. The trade-off in the other
direction is this: a 99% confidence level has a higher chance of capturing the true mean, but
it might be too wide of an interval to be practically useful. This Garfield comic demonstrates
how there are drawbacks to using a higher-confidence (and therefore wider) interval.

338



A second way you can decrease the margin of error is by increasing sample size. Recall that
all of our formulas for standard errors involve 𝑛 on the denominator (see Table 9.7), so by
increasing sample size on the denominator, we decrease our standard error. We also saw this
demonstrated via simulations in Section 9.5. Because our margin of error formula involves
standard error, increasing the sample size decreases the standard error and thus decreases the
margin of error. This fits with our intuition that having more infomation (i.e. a larger sample
size) will give us a more precise estimate (i.e. a narrower confidence interval) of the parameter
we’re interested in.

10.4 Example: One proportion

Let’s revisit our exercise of trying to estimate the proportion of red balls in the bowl from Chap-
ter 9. We are now interested in determining a confidence interval for population parameter 𝜋,
the proportion of balls that are red out of the total 𝑁 = 2400 red and white balls.

We will use the first sample reported from Ilyas and Yohan in Subsection 9.2.2 for our point
estimate. They observed 21 red balls out of the 50 in their shovel. This data is stored in the
tactile_shovel1 data frame in the moderndive package.

tactile_shovel1

# A tibble: 50 x 1
color
<chr>

1 white
2 red
3 red
4 red
5 red
6 red
7 red
8 white
9 red
10 white
# i 40 more rows

10.4.1 Observed Statistic

We can use our data wrangling tools to compute the proportion that are red in this data.

339



prop_red_stats <- tactile_shovel1 %>%
summarize(n = n(),

pi_hat = sum(color == "red") / n,
SE_pi_hat = sqrt(pi_hat*(1-pi_hat)/n))

prop_red_stats

# A tibble: 1 x 3
n pi_hat SE_pi_hat

<int> <dbl> <dbl>
1 50 0.42 0.0698

As shown in Table 10.1, the appropriate distribution for a confidence interval of ̂𝜋 is 𝑁(0, 1),
so we can use the critical value 1.96 to construct a 95% confidence interval.

CI <- prop_red_stats %>%
summarize(lower = pi_hat - 1.96*SE_pi_hat,

upper = pi_hat + 1.96*SE_pi_hat)
CI

# A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 0.283 0.557

We are 95% confident that the true proportion of red balls in the bowl is between 0.283 and
0.557. Recall that if we were to construct many, many 95% confidence intervals across repeated
samples, 95% of them would contain the true mean; so there is a 95% chance that our one
confidence interval (from our one observed sample) does contain the true mean.

10.5 Example: Comparing two proportions

If you see someone else yawn, are you more likely to yawn? In an episode of the show Myth-
busters, they tested the myth that yawning is contagious. The snippet from the show is avail-
able to view in the United States on the Discovery Network website here. More information
about the episode is also available on IMDb here.

Fifty adults who thought they were being considered for an appearance on the show were
interviewed by a show recruiter (“confederate”) who either yawned or did not. Participants
then sat by themselves in a large van and were asked to wait. While in the van, the Myth-
busters watched via hidden camera to see if the unaware participants yawned. The data frame

340

http://www.discovery.com/tv-shows/mythbusters/mythbusters-database/yawning-contagious/
https://www.discovery.com/tv-shows/mythbusters/videos/is-yawning-contagious
https://www.imdb.com/title/tt0768479/


containing the results is available at mythbusters_yawn in the moderndive package. Let’s
check it out.

mythbusters_yawn

# A tibble: 50 x 3
subj group yawn

<int> <chr> <chr>
1 1 seed yes
2 2 control yes
3 3 seed no
4 4 seed yes
5 5 seed no
6 6 control no
7 7 seed yes
8 8 control no
9 9 control no
10 10 seed no
# i 40 more rows

• The participant ID is stored in the subj variable with values of 1 to 50.
• The group variable is either "seed" for when a confederate was trying to influence the

participant or "control" if a confederate did not interact with the participant.
• The yawn variable is either "yes" if the participant yawned or "no" if the participant

did not yawn.

We can use the janitor package to get a glimpse into this data in a table format:

mythbusters_yawn %>%
tabyl(group, yawn) %>%
adorn_percentages() %>%
adorn_pct_formatting() %>%
# To show original counts
adorn_ns()

group no yes
control 75.0% (12) 25.0% (4)

seed 70.6% (24) 29.4 (10)

We are interested in comparing the proportion of those that yawned after seeing a seed versus
those that yawned with no seed interaction. We’d like to see if the difference between these

341



two proportions is significantly larger than 0. If so, we’d have evidence to support the claim
that yawning is contagious based on this study.

We can make note of some important details in how we’re formulating this problem:

• The response variable we are interested in calculating proportions for is yawn
• We are calling a success having a yawn value of "yes".
• We want to compare the proportion of yeses by group.

To summarize, we are looking to examine the relationship between yawning and whether or
not the participant saw a seed yawn or not.

10.5.1 Compute the point estimate

Note that the parameter we are interested in here is 𝜋1 −𝜋2, which we will estimate by ̂𝜋1 − ̂𝜋2.
Recall that the standard error is given by √ �̂�1(1−�̂�1)

𝑛1
+ �̂�2(1−�̂�2)

𝑛2
= √𝑉 𝑎𝑟( ̂𝜋1) + 𝑉 𝑎𝑟( ̂𝜋2). We

can use group_by() to calculate ̂𝜋 for each group (i.e. ̂𝜋1 and ̂𝜋2) as well as the corresponding
variance components for each group (i.e. 𝑉 𝑎𝑟( ̂𝜋1) and 𝑉 𝑎𝑟( ̂𝜋2)).

prop_yes_stats <- mythbusters_yawn %>%
group_by(group) %>%
summarize(n = n(),

pi_hat = sum(yawn == "yes")/n,
var_pi_hat = pi_hat*(1-pi_hat)/n)

prop_yes_stats

# A tibble: 2 x 4
group n pi_hat var_pi_hat
<chr> <int> <dbl> <dbl>

1 control 16 0.25 0.0117
2 seed 34 0.294 0.00611

We can then combine these estimates to obtain estimates for ̂𝜋1 − ̂𝜋2 and 𝑆𝐸( ̂𝜋1 − ̂𝜋2), which
are needed for our confidence interval.

diff_prop_yes_stats <- prop_yes_stats %>%
summarize(diff_in_props = diff(pi_hat),

SE_diff = sqrt(sum(var_pi_hat)))

diff_prop_yes_stats

342



# A tibble: 1 x 2
diff_in_props SE_diff

<dbl> <dbl>
1 0.0441 0.134

This diff_in_props value represents the proportion of those that yawned after seeing a seed
yawn (0.2941) minus the proportion of those that yawned with not seeing a seed (0.25). Using
the 𝑁(0, 1) distribution, we can construct the following 95% confidence interval.

CI <- diff_prop_yes_stats %>%
summarize(lower = diff_in_props - 1.96*SE_diff,

upper = diff_in_props + 1.96*SE_diff)
CI

# A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 -0.218 0.306

The confidence interval shown here includes the value of 0. We’ll see in Chapter 12 further what
this means in terms of this difference being statistically significant or not, but let’s examine a
bit here first. The range of plausible values for the difference in the proportion of those that
yawned with and without a seed is between -0.218 and 0.306.

Therefore, we are not sure which proportion is larger. If the confidence interval was entirely
above zero, we would be relatively sure (about “95% confident”) that the seed group had a
higher proportion of yawning than the control group. We, therefore, have evidence via this
confidence interval suggesting that the conclusion from the Mythbusters show that “yawning
is contagious” being “confirmed” is not statistically appropriate.

10.6 Exercises

10.6.1 Conceptual

Exercise 10.1. Which of the following is the correct general form for constructing a confidence
interval?

a) Critical Value ± Estimate*SD(Estimate)
b) Critical Value ± Estimate*SE(Estimate)
c) Estimate ± Critical Value*SD(Estimate)
d) Estimate ± Critical Value*SE(Estimate)

343



e) SD(Estimate) ± Critical Value*Estimate
f) SE(Estimate) ± Critical Value*Estimate

Exercise 10.2. Which of the following are correct regarding a 90% confidence interval? Select
all that apply.

a) We are 90% confident that the true mean is within any given 90% confidence interval
b) There is a 90% chance that the true mean is within any given 90% confidence interval
c) 90% of all of the data values in the population fall within the 90% confidence interval
d) Approximately 90% of confidence intervals contain the true mean

Exercise 10.3. As the margin of error decreases, the width of the confidence interval increases.

a) True
b) False

Exercise 10.4. As sample size increases, the margin of error decreases.

a) True
b) False

Exercise 10.5. How will the margin of error change if you both increase the sample size and
decrease the confidence level (ex: from 95% down to 90%)?

a) decrease
b) increase
c) stay the same
d) impossible to tell

Exercise 10.6. You are trying to calculate the standard error but don’t know the true popu-
lation standard deviation. Which of the following formulas should you use to calculate 𝑆𝐸( ̄𝑥)
?

a) 𝑆𝐸( ̄𝑥) = 𝑠
b) 𝑆𝐸( ̄𝑥) = 𝑠

𝑛
c) 𝑆𝐸( ̄𝑥) = 𝑠√𝑛
d) 𝑆𝐸( ̄𝑥) = 𝜎√

𝑛−1
e) 𝑆𝐸( ̄𝑥) = 𝑠√

𝑛−1

Exercise 10.7. You are calculating a confidence interval for the difference in average ACT
scores between private high schools and public high schools in Illinois. Upon surveying 15
private high schools you calculate an average ACT score of 25 with a standard deviation of
2. And for 35 public high schools you calculate an average ACT score of 23 with a standard
deviation of 3. Which of the following is used to calculate one of the 90% critical values?

344



a) qnorm(p = 0.10)
b) qnorm(p = 0.05)
c) qt(p = 0.10, df = 14)
d) qt(p = 0.05, df = 14)
e) qt(p = 0.10, df = 34)
f) qt(p = 0.05, df = 34)

Exercise 10.8. You are calculating a confidence interval for the proportion of US citizens
who have never left their home state. In a random survey, you found 14 out of 200 people have
not left their home state. Which of the following is used to calculate one of the 97% critical
values?

a) qt(p = 0.07, df = 199)
b) qnorm(p = 0.97)
c) qnorm(p = 0.03)
d) qnorm(p = 0.015)
e) qt(p = 0.03, df = 199)

Exercise 10.9. What is the standard error of the estimator in Exercise 10.8?

a) 0.00033
b) 0.01814
c) 0.03915
d) 3.87992
e) 0.06819

10.6.2 Application

The application exercises use the nba_sample dataset from the ISDSdatasets package. This
is a random sample obtained from the nba dataset.

Exercise 10.10. Using nba_sample, we are interested in determining the number of points
that Michael Jordan scored per game (pts) on average. Develop an 85% confidence interval
for this variable.

Exercise 10.11. Using nba_sample determine the proportion of wins for LeBron James.
Develop a 99% confidence interval for this variable.

Exercise 10.12. Using nba_sample determine if LeBron James or Kobe Bryant won more
games. In other words, find the 90% confidence interval for the difference in proportion of
wins (win) between LeBron James and Kobe Bryant.

345



Exercise 10.13. Using nba_sample determine if Michael Jordan or Kobe Bryant were better
at free throws. In other words, find the 95% confidence interval for the difference in average
free throw percent (ft_percent) between Michael Jordan and Kobe Bryant.

10.6.3 Advanced

Exercise 10.14. Using the nba_sample dataset, determine if our players play better at home
or away games. Specify how you chose to evaluate what constitutes “playing better” and
specify your confidence level used.

Exercise 10.15. Basketball reference keeps very diligent and accurate records for basketball
games, so this is one of the rare instances when we have the entire population of games
played for Michael Jordan, Kobe Bryant, and LeBron James through the 2021 season. This
census is our nba dataset. In the above problems we used a random sample to demonstrate
how a sample is used to approximate the population parameters. Calculate the population
parameters relevant to Exercise 10.10, Exercise 10.11, Exercise 10.12, and Exercise 10.13 using
the nba dataset and specify if your confidence interval captured the true population.

346



11 P-values

In Chapter 10, we covered how to construct and interpret confidence intervals, which use the
theory of repeated samples to make inferences from a sample (your data) to a population. To
do so, we used counterfactual thinking that underpins statistical reasoning, wherein making
inferences requires you to imagine alternative versions of your data that you might have under
other possible samples selected in the same way. In this chapter, we extend this counterfactual
reasoning to imagine other possible samples you might have seen if you knew the trend in the
population. This way of thinking will lead us to define p-values.

Packages Needed

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(moderndive)
library(infer)
library(ggplot2movies)

11.1 Stochastic Proof by Contradiction

In many scientific pursuits, the goal is not simply to estimate a population parameter. Instead,
the goal is often to understand if there is a difference between two groups in the population
or if there is a relationship between two (or more) variables in the population. For example,
we might want to know if average SAT scores differ between men and women, or if there is a
relationship between education and income in the population in the United States.

Let’s take the difference in means between two groups as a motivating example. In order to
prove that there is a difference between average SAT scores for men and women, we might
proceed with what is in math called a proof by contradiction. Here, however, this proof is
probabilistic (aka stochastic).

Stochastic Proof by Contradiction:

347



There are three steps in a Proof by Contradiction. In order to illustrate these, assume we wish
to prove that there is a relationship between X and Y.

1. Negate the conclusion: Begin by assuming the opposite – that there is no relationship
between X and Y.

2. Analyze the consequences of this premise: If there is no relationship between X and Y in
the population, what would the sampling distribution of the estimate of the relationship
between X and Y look like?

3. Look for a contradiction: Compare the relationship between X and Y observed in your
sample to this sampling distribution. How (un)likely is this observed relationship?

If likelihood of the observed relationship is small (given your assumption of no relationship),
then this is evidence that there is in fact a relationship between X and Y in the population.

11.2 Repeated samples, the null hypothesis, and p-values

11.2.1 Null hypothesis

In the example of asking if there is a difference in SAT scores between men and women, you
will note that in order to prove that there is a difference, we begin by assuming that there
is not a difference (Step 1). We call this the null hypothesis – it is the hypothesis we are
attempting to disprove. The most common null hypotheses are:

• A parameter is 0 in the population (e.g. some treatment effect 𝜃 = 0)
• There is no difference between two or more groups in the population (e.g. 𝜇1 − 𝜇2 = 0)
• There is no relationship between two variables in the population (e.g. 𝛽1)
• The population parameter is equal to some norm known or assumed by previous data or

literature (e.g. 𝜋 = 0.5 or 𝜇 = 𝜇𝑛𝑜𝑟𝑚)

Importantly, this hypothesis is about the value or relationship in the population, not the sam-
ple. (This is a very easy mistake to make). Remember, you have data in your sample, so you
know without a doubt if there is a difference or relationship in your data (that is your estimate).
What you do not know is if there is a difference or relationship in the population. Once a null
hypothesis is determined, the next step is to determine what the sampling distribution of the
estimator would be if this null hypothesis were true (Step 2). We can determine what this null
distribution would look like, just as we’ve done with sampling distributions more generally:
using mathematical theory and formulas for known distributions.

348



11.2.2 P-values

Once the distribution of the sample statistic under the null hypothesis is determined, to com-
plete the stochastic proof by contradiction, you simply need to ask: Given this distribution,
how likely is it that I would have drawn a random sample in which the estimated value is this
extreme or more extreme?

This is the p-value: The probability of your observing an estimate as extreme as the one
you observed if the null hypothesis is true. If this p-value is small, it means that this data is
unlikely to occur under the null hypothesis, and thus the null hypothesis is unlikely to be true.
(See, proof by contradiction!)

Figure 11.1: P-value diagram

In general, in order to estimate a p-value, you first need to standardize your sample statistic.
This standardization makes it easier to determine the sampling distribution under the null
hypothesis.

Standardization is conducted using the following formula:

𝑡_𝑠𝑡𝑎𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑁𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒
𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

Note this is just a special case of the previous standardization formula we’ve seen before, where
here we’re plugging in the “null value” for the mean of the estimate. The null value refers to
the value of the population parameter assumed by the null hypothesis. As we mentioned, in

349



many cases the null value is zero. That is, we begin the proof by contradiction by assuming
there is no relationship, no differences between groups, etc. in the population.

This standardized statistic 𝑡_𝑠𝑡𝑎𝑡 is then used to determine the sampling distribution under
the null hypothesis and the p-value based upon the observed value.

11.3 P-value and Null Distribution Example

11.3.1 IMDB data

The movies dataset in the ggplot2movies package contains information on 58,788 movies
that have been rated by users of IMDB.com.

movies

# A tibble: 58,788 x 24
title year length budget rating votes r1 r2 r3 r4 r5 r6
<chr> <int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 $ 1971 121 NA 6.4 348 4.5 4.5 4.5 4.5 14.5 24.5
2 $1000 a~ 1939 71 NA 6 20 0 14.5 4.5 24.5 14.5 14.5
3 $21 a D~ 1941 7 NA 8.2 5 0 0 0 0 0 24.5
4 $40,000 1996 70 NA 8.2 6 14.5 0 0 0 0 0
5 $50,000~ 1975 71 NA 3.4 17 24.5 4.5 0 14.5 14.5 4.5
6 $pent 2000 91 NA 4.3 45 4.5 4.5 4.5 14.5 14.5 14.5
7 $windle 2002 93 NA 5.3 200 4.5 0 4.5 4.5 24.5 24.5
8 '15' 2002 25 NA 6.7 24 4.5 4.5 4.5 4.5 4.5 14.5
9 '38 1987 97 NA 6.6 18 4.5 4.5 4.5 0 0 0
10 '49-'17 1917 61 NA 6 51 4.5 0 4.5 4.5 4.5 44.5
# i 58,778 more rows
# i 12 more variables: r7 <dbl>, r8 <dbl>, r9 <dbl>, r10 <dbl>, mpaa <chr>,
# Action <int>, Animation <int>, Comedy <int>, Drama <int>,
# Documentary <int>, Romance <int>, Short <int>

We’ll focus on a random sample of 68 movies that are classified as either “action” or “romance”
movies but not both. We disregard movies that are classified as both so that we can assign
all 68 movies into either category. Furthermore, since the original movies dataset was a little
messy, we provided a pre-wrangled version of our data in the movies_sample data frame
included in the moderndive package (you can look at the code to do this data wrangling
here):

350

https://github.com/moderndive/moderndive/blob/master/data-raw/process_data_sets.R#L14


movies_sample

# A tibble: 68 x 4
title year rating genre
<chr> <int> <dbl> <chr>

1 Underworld 1985 3.1 Action
2 Love Affair 1932 6.3 Romance
3 Junglee 1961 6.8 Romance
4 Eversmile, New Jersey 1989 5 Romance
5 Search and Destroy 1979 4 Action
6 Secreto de Romelia, El 1988 4.9 Romance
7 Amants du Pont-Neuf, Les 1991 7.4 Romance
8 Illicit Dreams 1995 3.5 Action
9 Kabhi Kabhie 1976 7.7 Romance
10 Electric Horseman, The 1979 5.8 Romance
# i 58 more rows

The variables include the title and year the movie was filmed. Furthermore, we have a
numerical variable rating, which is the IMDB rating out of 10 stars, and a binary categorical
variable genre indicating if the movie was an Action or Romance movie. We are interested in
whether there is a difference in average ratings between the Action and Romance genres.

That is, our parameter of interest is 𝜇1 − 𝜇2, which we estimate by ̄𝑥1 − ̄𝑥2.

We start by assuming there is no difference, therefore our null value is 𝜇1 − 𝜇2 = 0. We want
to calculate 𝑡_𝑠𝑡𝑎𝑡 for this scenario:

𝑡_𝑠𝑡𝑎𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑁𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒
𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) = ( ̄𝑥1 − ̄𝑥2) − 0

√ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

Let’s compute all the necessary values from our sample data. We need: the number of movies
(n), the mean rating (xbar), and the standard deviation (s) split by the binary variable genre.
We’ll also calculate 𝑠2

𝑖
𝑛𝑖

for each group (var_xbar), which is needed to calculate the denominator
of 𝑡_𝑠𝑡𝑎𝑡.

genre_mean_stats <- movies_sample %>%
group_by(genre) %>%
summarize(n = n(),

xbar = mean(rating),
s = sd(rating),
var_xbar = s^2/n)

genre_mean_stats

351



# A tibble: 2 x 5
genre n xbar s var_xbar
<chr> <int> <dbl> <dbl> <dbl>

1 Action 32 5.28 1.36 0.0579
2 Romance 36 6.32 1.61 0.0720

So we have 36 movies with an average rating of 6.32 stars out of 10 and 32 movies with a
sample mean rating of 5.28 stars out of 10. The difference in these average ratings is thus
6.32 - 5.28 = 1.05. And the standard error of this difference is 0.36. Our resulting t_stat is
2.906.

genre_mean_stats %>%
summarize(diff_in_means = diff(xbar),

SE_diff = sqrt(sum(var_xbar)),
t_stat = diff_in_means / SE_diff)

# A tibble: 1 x 3
diff_in_means SE_diff t_stat

<dbl> <dbl> <dbl>
1 1.05 0.360 2.91

There appears to be an edge of 1.05 stars in romance movie ratings. The question is however,
are these results indicative of a true difference for all romance and action movies? Or could
this difference be attributable to chance and sampling variation? Computing a p-value for this
t-statistic can help us to answer this.

11.3.2 p-values using formulas

Recall from Chapter 10 that even though the sampling distribution of many estimators are
normally distributed, the standardized statistic 𝑡_𝑠𝑡𝑎𝑡 computed above often follows a 𝑡(𝑑𝑓)
distribution because the formula for the standard error of many estimators involves an addi-
tional estimated quantity, 𝑠2, when the population variance is unknown. Recall that (differ-
ences in) proportions still follow the 𝑁(0, 1) distribution because they do not require 𝑠2 to be
estimated. An abbreviated version of Table 10.1 with the relevant degrees of freedom for the
t-distribution is given below:

Statistics Population parameter Estimator t-distribution df
Mean 𝜇 ̄𝑥 𝑛–1
Difference in
means

𝜇1 − 𝜇2 ̄𝑥1 − ̄𝑥2 ≈ 𝑚𝑖𝑛(𝑛1 − 1, 𝑛2–1)∗

352



Statistics Population parameter Estimator t-distribution df
Regression
intercept

𝛽0 𝑏0 𝑛 − 𝑘 − 1

Regression
slope

𝛽1 𝑏1 𝑛 − 𝑘 − 1

Note that for difference in means, the exact degrees of freedom formula is much more compli-
cated. We use 𝑚𝑖𝑛(𝑛1 − 1, 𝑛2–1) as a conservative approximation when doing computations
manually. For the regression parameters, 𝑘 is equal to the number of predictors in the model.
So for a model with one predictor, 𝑘 = 1 and the degrees of freedom would be 𝑛−1−1 = 𝑛−2.
Caveat: It is important to note that the t-distribution is often referred to as a “small sample”
distribution. That is because once the degrees of freedom are large enough (when the sample
size is large), the t-distribution is actually quite similar to the normal distribution as we have
seen previously. For analysis purposes, however, you don’t need to determine when to use one
or the other as your sampling distribution: unless dealing with proportions, you can always
use the t-distribution instead of the Normal distribution.

We can calculate a p-value by asking: Assuming the null distribution, what is the probability
that we will see a 𝑡_𝑠𝑡𝑎𝑡 value as extreme as the one from our data? Typically, we want to
calculate what is called a “two-sided” p-value, which calculates the probability that you would
observe a 𝑡_𝑠𝑡𝑎𝑡 value as extreme as the one observed in either direction. That is, we are
interested in values of 𝑡_𝑠𝑡𝑎𝑡 that are as large in magnitude as the one we observed, in both
the positive and negative directions. For example, if we observe a 𝑡_𝑠𝑡𝑎𝑡 value of 2.0, the
appropriate two-sided p-value is represented by the probability shaded in Figure 11.2.

We can calculate this probability using the pt()function in R, where we plug in the appropriate
degrees of freedom and our t_stat value as the quantile. Remember there is a default argument
lower.tail = TRUE in the pt() function, which means it returns the probability to the left of
the t_stat value you enter. Because the t-distribution is symmetric, you can simply multiply
the probability in the lower tail by two to get the probability of falling in either tail. The p-
value implied by Figure 11.2 would therefore be calculated by 2*pt(-2, df = 99). Note that
in general if you have positive t_stat value, you will want to either use 2*pt(-t_stat, 99) or
2*pt(t_stat, 99, lower.tail = FALSE). A general form that will always work regardless
of the sign of t_stat is to use 2*pt(-abs(t_stat), 99), where abs() is the absolute value
function.

In our IMDB movies example, we observe t_stat = 2.91, and we want to know what the
probability of observing a 𝑡_𝑠𝑡𝑎𝑡 value as large in magnitude as this would be under the null
distribution. Note our approximate 𝑑𝑓 = 𝑚𝑖𝑛(𝑛1 − 1, 𝑛2 − 1) = 𝑚𝑖𝑛(36 − 1, 32 − 1) = 31, so
our p-value is given by 2*pt(-2.91, 31) = 0.007. This tells us that if the null distribution is
true (i.e. if there is no true difference between average ratings of romance and action movies on
IMDB), we would only observe a difference as large as we did 0.7% of the time. This provides

353



0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
t_stat

y

Figure 11.2: 2*pt(-2, df = 99)

354



evidence - via proof by contradiction - that the null distribution is likely false; that is, there
is likely a true difference in average ratings of romance and action movies on IMDB.

11.3.3 p-values using t.test

There is a convenient function in R called t.test that will conduct the above calculations for
you, including 𝑡_𝑠𝑡𝑎𝑡 and its 𝑝 − 𝑣𝑎𝑙𝑢𝑒. For a difference in means like the IMDB example,
t.test requires two arguments x and y that are numeric vectors of data values for each group
you are comparing. In this example, x would be the ratings for romance movies and y would
be the ratings for action movies. We can create these two vectors by using filter() on our
movies_sample data.

romance <- movies_sample %>%
filter(genre == "Romance")

action <- movies_sample %>%
filter(genre == "Action")

movies_t.test <- t.test(x = romance$rating, y = action$rating)
movies_t.test

Welch Two Sample t-test

data: romance$rating and action$rating
t = 3, df = 66, p-value = 0.005
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.328 1.767
sample estimates:
mean of x mean of y

6.32 5.28

We see that t.test returns the same values for ̄𝑥1 = 6.32 and ̄𝑥2 = 5.28 that we saw before.
The output shows a rounded value for 𝑡_𝑠𝑡𝑎𝑡 as 𝑡 = 3, but we can access the unrounded value
using movies_t.test$statistic and find that it gives the same value 𝑡_𝑠𝑡𝑎𝑡 = 2.91.

movies_t.test$statistic

t
2.91

355



Note the degrees of freedom in movies_t.test are different due to the fact that t.test is
able to use the more complicated exact formula for degrees of freedom, whereas we used the
conservative approximate formula 𝑑𝑓 = 𝑚𝑖𝑛(𝑛1 − 1, 𝑛2 − 1). Using t.test gives a p-value
of 0.005, which is similar to the value we computed using formulas above 0.007. Again, the
p-values here will not match exactly due to the different degrees of freedom.

11.3.4 p-values using regression

We can also use a regression model to estimate the difference between means. We can fit the
model

̂𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑏0 + 𝑏1 ∗ 𝑔𝑒𝑛𝑟𝑒,
where action is the reference category (because it comes before romance in alphabetical order).
Recalling what we learned in Section 5.2, 𝑏0 is interpreted as the average rating for action
movies, and 𝑏1 is the offset in average rating for romance movies, relative to action movies.
That is, 𝑏1 = ̄𝑥𝑟𝑜𝑚𝑎𝑛𝑐𝑒 − ̄𝑥𝑎𝑐𝑡𝑖𝑜𝑛, which is exactly the estimate we’re interested in. Let’s fit
this model and take a look at its summary output.

movies_model <- lm(rating ~ genre, data = movies_sample)
summary(movies_model)

Call:
lm(formula = rating ~ genre, data = movies_sample)

Residuals:
Min 1Q Median 3Q Max

-4.022 -1.135 0.101 1.078 3.278

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.275 0.265 19.92 <0.0000000000000002 ***
genreRomance 1.047 0.364 2.88 0.0054 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.5 on 66 degrees of freedom
Multiple R-squared: 0.111, Adjusted R-squared: 0.098
F-statistic: 8.28 on 1 and 66 DF, p-value: 0.0054

The coefficient for 𝑏1 (labeled genreRomance) does in fact give the estimate of the difference
in means that we’ve seen already. Note that you now know how to interpret the other three

356



columns in the regression output: Std. Error gives the standard error of the estimate in
the corresponding row, t-value gives the 𝑡_𝑠𝑡𝑎𝑡 value for the standardized estimate, and
Pr(>|t|) gives the two-sided p-value for the corresponding 𝑡_𝑠𝑡𝑎𝑡.
One important caveat is that when using the regression framework to estimate the difference
between means, the regression model imposes an additional assumption on the data: that
the variances are equal in both groups. The usual standard error formula for a difference in
means is √ 𝑠2

1
𝑛1

+ 𝑠2
2

𝑛2
, which allows there to be different variances in each group (i.e. 𝑠2

1 and
𝑠2

2 don’t have to be equal). A regression model assumes they are equal, however, and only
estimates one variance component that is pooled across all the data points. Doing so increases
the degrees of freedom to 𝑑𝑓 = 𝑛 − 2. You should always be careful to consider whether or
not equal variances is a reasonable assumption. In general, an equal variance assumption is
usually valid when random assignment has been used to assign the two groups being compared.
In the movies example, genres were not randomly assigned, but 𝑠1 and 𝑠2 were similar (1.36
vs. 1.61), so this is a somewhat reasonable assumption.

11.4 Example: Ride-share prices

Imagine you work for a ride share company, which we will call company A, and you want to
know how your competitor’s prices compare to yours. We will call your competitor company B.
Because you work for company A, you have access to all of the company’s data and know that
the average price for a ride is 𝜇𝐴 = $19.50. However, you are only able to obtain a random
sample of data on 100 rides from company B. Let’s load in this sample data and take a look
at it.

rides_B <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQpOEBZ5zXfOnoIeRxql4X1-djLqCZRkNg4X1yqhdYXCqm_exyaeYDgWaj4KJ2FgpqPZPoDvD71gYEr/pub?gid=0&single=true&output=csv")

glimpse(rides_B)

Rows: 100
Columns: 2
$ price <dbl> 16.75, 18.97, 20.95, 7.41, 24.60, 20.75, 22.73, 15.21, 24.14,~
$ duration <dbl> 16.3, 13.5, 21.1, 22.4, 18.9, 25.1, 38.1, 21.8, 26.1, 15.6, 2~

We want to know whether or not 𝜇B = $19.50, so we estimate 𝜇B by ̄𝑥B. We find that in our
sample, the average company B ride price is $20.30.

rides_B %>%
summarize(xbar = mean(price))

357



# A tibble: 1 x 1
xbar
<dbl>

1 20.3

This is higher than the A population average of $19.50, but is this indicative of a true dif-
ference in average prices, or is this just the result of sampling variation and the fact we’re
only observing 100 data points? Let’s compute a t-statistic and p-value to help answer this
question.

11.4.1 Using formulas

Note, we begin by assuming that company B also has a population average of $19.50, and we
will examine whether our data seem to be consistent with that null hypothesis. That is, we
start with the null hypothesis that 𝜇B = $19.50. Note that this is a null hypothesis of the
type 𝜇 = 𝜇𝑛𝑜𝑟𝑚, where we have a specific null value we want to compare our sample to. If
this null hypothesis is true, we expect the t-statistic �̄�−19.50

𝑠√𝑛
to follow a t-distribution with

𝑑𝑓 = 𝑛 − 1 = 99. Let’s compute this t-statistic for the values in our sample and compare it to
this known sampling distribution.

rides_B %>%
summarize(xbar = mean(price),

s = sd(price),
n = n(),
SE = s/sqrt(n),
t_stat = (xbar - 19.50)/SE)

# A tibble: 1 x 5
xbar s n SE t_stat
<dbl> <dbl> <int> <dbl> <dbl>

1 20.3 5.18 100 0.518 1.53

By looking at Figure 11.3 and computing the p-value using pt(), we see that if company B
does in fact have the same true population average price as company A (i.e. if 𝜇B = $19.50), we
would expect to observe an average price as large or larger than the one we did (i.e. ̄𝑥B = 20.3)
about 13% of the time.

2*pt(-1.53, df = 99)

[1] 0.129

358



0.0

0.1

0.2

0.3

0.4

−3.00 −1.00 0.00 1.53 3.00
t−statistic

y

Figure 11.3: t-statistic for average price of Uber rides (n = 100)

359



11.4.2 Using t.test

Let’s compute the same information using t.test. Note in this case, we are only concerned
with one mean (rather than a difference in two group means), so we only need to specify x.
There is a default argument in t.test that sets the null value mu = 0, which we need to
change to mu = 19.5. Let’s run t.test on this data and examine the results.

rides_t.test <- t.test(rides_B$price, mu = 19.5)
rides_t.test

One Sample t-test

data: rides_B$price
t = 2, df = 99, p-value = 0.1
alternative hypothesis: true mean is not equal to 19.5
95 percent confidence interval:
19.3 21.3
sample estimates:
mean of x

20.3

rides_t.test$stderr

[1] 0.518

rides_t.test$statistic

t
1.53

rides_t.test$p.value

[1] 0.13

t.test gives all the same values we saw when using the formulas to calculate these quantities
“by hand.”

360



11.4.3 Using regression

We can use a regression model with an intercept only to estimate the mean of a single variable.
In this case, our model would be 𝑝𝑟𝑖𝑐𝑒 = 𝑏0. In order to specify this in R, we simply put a 1
on the right hand side of the tilde instead of specifying any predictor variables. Let’s look at
the results of this model.

ride_model <- lm(price ~ 1, data = rides_B)
summary(ride_model)

Call:
lm(formula = price ~ 1, data = rides_B)

Residuals:
Min 1Q Median 3Q Max

-12.878 -3.789 0.315 3.934 10.873

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.292 0.518 39.1 <0.0000000000000002 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.18 on 99 degrees of freedom

We see that this model gives the correct estimate ̄𝑥𝐵 = 20.3, standard error 𝑆𝐸( ̄𝑥𝐵) = 0.518,
and degrees of freedom 𝑛 − 1 = 99. But what’s going on with the very large t-value of 39.1?
In a regression framework, the model always assumes the null value is zero and therefore the
t_stat is computed as 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒−0

𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) . We could use the model output for ̄𝑥, 𝑆𝐸( ̄𝑥), and 𝑑𝑓
to compute the correct t-value and p-value ourselves by subtracting off the null value of 19.5,
similar to when we did the calculations via formulas. Alternatively, we could get the regression
model to report the correct t-value and p-value by first centering our variable around the null
value.

rides_B <- rides_B %>%
mutate(price_centered = price - 19.5)

ride_model_2 <- lm(price_centered ~ 1, data = rides_B)
summary(ride_model_2)

361



Call:
lm(formula = price_centered ~ 1, data = rides_B)

Residuals:
Min 1Q Median 3Q Max

-12.878 -3.789 0.315 3.934 10.873

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.792 0.518 1.53 0.13

Residual standard error: 5.18 on 99 degrees of freedom

This results in the correct t-value of 1.53 and a p-value of 0.13. Note that the Estimate column
is now reporting ̄𝑥𝐵 − 19.5 = 20.292 − 19.5 = 0.792.

11.5 Interpretation of p-values

Like many statistical concepts, p-values are often misunderstood and misinterpreted. Remem-
ber, a p-value is the probability that you would observe data as extreme as the data you do if,
in fact, the null hypothesis is true. As Wikipedia notes:

• The p-value is not the probability that the null hypothesis is true, or the probability that
the alternative hypothesis is false.

• The p-value is not the probability that the observed effects were produced by random
chance alone.

• The p-value does not indicate the size or importance of the observed effect.

Finally, remember that the p-value is a probabilistic attempt at making a proof by contradic-
tion. Unlike in math, this is not a definitive proof. For example, if the p-value is 0.10, this
means that if the null hypothesis is true, there is a 10% chance that you would observe an
effect as large as the one in your sample. Depending upon if you are a glass-half-empty or
glass-half-full kind of person, this could be seen as large or small:

• “Only 10% chance is small, which is unlikely. This must mean that the null hypothesis
is not true,” or

• “But we don’t know that for sure: in 10% of possible samples, this does occur just by
chance. The null hypothesis could be true.”

This will be important to keep in mind as we move towards using p-values for decision making
in Chapter 12.

362



11.6 Exercises

11.6.1 Conceptual

Exercise 11.1.

11.6.2 Application

The application exercises use datasets from the ISDSdatasets package.

Exercise 11.2.

11.6.3 Advanced

Exercise 11.3.

363



12 Hypothesis tests

In Chapter 11, we introduced the p-value, which provides analysts with a probability (between
0 and 1) that the observed data would be found if the null hypothesis were true. Readers
familiar with the use of statistics may have noticed, however, that Chapter 11 did not refer
to any criteria (e.g., p < .05) or use the phrase “statistically significant”. This is because the
concept of a p-value is distinct from the use of a p-value to make a decision. In this chapter,
we introduce hypothesis testing, which can be used for just this purpose.

Packages Needed

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)
library(moderndive)
library(infer)

12.1 Decision making

Remember that a p-value is a probabilistic proof by contradiction. It might show that the
chance that the observed data would occur under the null hypothesis is 2%, 20%, or 50%. But
at what level is the evidence enough that we would decide that the null hypothesis must not
be true?

Conventional wisdom is to use 𝑝 < 0.05 as this threshold, where 𝑝 denotes the p-value. But as
many have pointed out – particularly in the current ‘replication crisis’ era – this threshold is
arbitrary. Why is 5% considered small enough? Why not 0.5%? Why not 0.05%? Decisions
regarding these thresholds require substantive knowledge of a field, the role of statistics in
science, and some important trade-offs, which we will introduce next.

364



12.2 Decision making trade-offs

Imagine that you’ve been invited to a party, and you are trying to decide if you should go. On
the one hand, the party might be a good time, and you’d be happy that you went. On the
other hand, it might not be that much fun and you’d be unhappy that you went. In advance,
you don’t know which kind of party it will be. How do you decide? We can formalize this
decision making in terms of a 2x2 table crossing your decision (left) with information about
the party (top):

Table 12.1: Party decision making

Table 12.1: Party decision making

- Party is fun Party is not fun
Go to party Great decision! Type I error (wasted time)
Stay home Type II error (missed out) Great decision!

As you can see from this table, there are 4 possible combinations. If you decide to go to the
party and it is in fact fun, you’re happy. If you decide to stay home and you hear from your
friends that it was terrible, you’re happy. But in the other two cases you are not happy:

• Type I error: You decide to go to the party and the party is lame. You’ve now wasted
your time and are unhappy.

• Type II error: You decide to forgo the party and stay home, but you later hear that the
party was awesome. You’ve now missed out and are unhappy.

In life, we often have to make decisions like this. In making these decisions, there are trade-offs.
Perhaps you are the type of person that has FOMO – in that case, you may really want to
minimize your Type II error, but at the expense of attending some boring parties and wasting
your time (a higher Type I error). Or perhaps you are risk averse and hate wasting time – in
which case you want to minimize your Type I error, at the expense of missing out on some
really great parties (a higher Type II error).

There are a few important points here:

• When making a decision, you cannot know in advance what the actual outcome will be.
• Sometimes your decision will be the right one. Ideally, you’d like this to be most of the

time.
• But, sometimes your decision will be the wrong one. Importantly, you cannot minimize

both Type I and II errors at the same time. One will be minimized at the expense of
the other.

• Depending upon the context, you may decide that minimizing Type I or II errors is more
important to you.

365



These features of decision-making play out again and again in life. In the next sections, we
provide two common examples, one in medicine, the other in law.

12.2.1 Medicine

Imagine that you might be pregnant and take a pregnancy test. This test is based upon levels
of HcG in your urine, and when these levels are “high enough” (determined by the pregnancy
test maker), the test will tell you that you are pregnant (+). If the levels are not “high enough”,
the test will tell you that you are not pregnant (-). Depending upon how the test determines
“high enough” levels of HcG, however, the test might be wrong. To see how, examine the
following table.

Table 12.2: Pregnancy test decision making

Table 12.2: Pregnancy test decision making

- Pregnant Not pregnant
Test + Correct Type I error: False Positive
Test - Type II error: False Negative Correct

As the table notes, in two of the cases, the test correctly determines that you are either pregnant
or not pregnant. But there are also two cases in which the test (a decision) is incorrect:

• Type I error: False Positive. In this case, the test tells you that you are pregnant when
in fact you are not. This would occur if the level of HcG required to indicate positive is
too low.

• Type II error: False Negative. In this case, the test tells you that you are not pregnant
but you actually are. This would occur if the level of HcG required to indicate positive
is too high.

When a pregnancy test manufacturer develops the test, they have to pay attention to these
two possible error types and think through the trade-offs of each. For example, if they wanted
to minimize the Type II error (False Negative), they could just create a test that always
tells people they are pregnant (i.e., HcG >= 0). Conversely, if they wanted to minimize the
Type I error (False Positive), they could set the HcG level to be very high, so that it only
detects pregnancy for those that are 6 months pregnant. Of course, the trade-off here is that
certainly many who took the test would actually be pregnant, and yet the test would tell them
otherwise.

In developing these tests, which do you think test manufacturers focus on minimizing: Type
I or II errors?

366



12.2.2 Law

Imagine that you are on the jury of a criminal trial. You are presented with evidence that
a crime has been committed and must make a decision regarding the guilt of the defendant.
But you were not there when the crime was committed, so it is impossible to know with 100%
accuracy that your decision is correct. Instead, you again encounter this 2x2 table:

Table 12.3: Criminal trial decision making

Table 12.3: Criminal trial decision making

- Guilty Innocent
“Guilty” verdict Correct Type I error: Wrongly

Convicted
“Not Guilty”
verdict

Type II error: Insufficient
Evidence

Correct

As the table notes, in two of the cases, the jury correctly determines that the defendant is
either guilty or not. But there are also two cases in which the jury’s decision is incorrect:

• Type I error: Wrongly Convicted. In this case, the jury decides that the defendant is
guilty when in fact they are not. This might be because evidence that was presented
was falsified or because prejudices and discrimination affect how the jury perceives the
defendant.

• Type II error: Insufficient Evidence. In this case, the jury decides that the defendant is
“not guilty” when in fact they are. This is typically because there is insufficient evidence.

In the US court system, the assumption is supposed to be that a defendant is innocent until
proven guilty, meaning that a high burden of proof is required to find a defendant guilty. This
means that the system is designed to have a low Type I error. The trade-off implicit in this is
that the Type II error may be higher – that is, that because the burden of proof is high, some
perpetrators will “get off”. (Note, of course, that we’re describing the ideal; as the Innocence
Project’s work shows, Type I errors are more common than we’d like, particularly among racial
minorities).

12.2.3 Commonalities

Before connecting these to statistical decision making, it’s interesting to note that in all three
of the cases we’ve introduced here – party attendance, medicine, and law – the minimization
of Type I error is often primary. That is, we’d prefer a decision rule that doesn’t send us to
parties we don’t like, doesn’t tell us we are pregnant when we aren’t, and doesn’t wrongfully

367

https://www.innocenceproject.org
https://www.innocenceproject.org


convict people of crimes. This is not to say Type II error doesn’t matter, but that it is often
seen as secondary to Type I.

12.3 Hypothesis test: Decision making in statistics

The same sort of decision making problems face statistics as well: based on some p-value
criterion, we could either reject the null hypothesis or not. And either the null hypothesis is
true, or it is not – in which case some alternative hypothesis must be true.

This is the first time we have mentioned an alternative hypothesis. This hypothesis is what
we are seeking evidence to prove when we are conducting what is called a hypothesis test:

Table 12.4: Hypothesis test decision making

Table 12.4: Hypothesis test decision making

- Alternative Model is True Null Model is True
Reject Null Hypothesis Correct 𝛼 = Type I error
Do Not Reject Null
Hypothesis

𝛽 = Type II error Correct

There is a lot of new information here to define:

• We reject the null hypothesis if the p-value is smaller than some threshold (i.e., p <
threshold).

• We do not reject the null hypothesis if the p-value is larger than this threshold (i.e., p
> threshold).

• The null model is as we’ve defined it in Chapter 11. In most cases it is that there is no
effect, no difference, or no relationship. (Other null hypotheses are possible, these are
just the most common.)

• The alternative model is a model we are seeking evidence to prove is correct. For
example, the alternative model may be that there is an average non-zero difference
between men and women’s SAT scores. Or that there is a correlation between income
and education. Specifying an alternative can be tricky – usually this is based both on
substantive knowledge and findings from prior studies.

Just as in the other decision-making context, there are two cases in which these decisions are
correct, and two cases in which they are not:

• 𝛼 = Type I error: The test rejects the null hypothesis (because p < threshold), yet
the null hypothesis is actually true. For example, the test indicates that there is a
relationship between education and income when in fact there is not.

368



• 𝛽 = Type II error: The test does not reject the null hypothesis (because p > threshold),
but the alternative hypothesis is actually true. For example, the test indicates that there
is not enough evidence to indicate a relationship between education and income, yet in
fact there is a relationship.

Just as in your social life, medicine, and law, these two error types are in conflict with one
another. A test that minimizes Type I error completely (by setting the threshold to 0) never
rejects the null hypothesis, thus maximizing the Type II error. And vice versa, a test that
minimizes Type II error completely (by setting the threshold to 1) always rejects the null
hypothesis, thus maximizing the Type I error.

In science, these values have been somewhat arbitrarily set as:

• 𝛼 = Type I error: set the threshold to 0.05. Thus, finding that there is a 5% or smaller
chance under the null hypothesis that a sample would produce a result this extreme is
deemed sufficient evidence to decide the null hypothesis is not true.

• 𝛽 = Type II error: 0.20. That is, we are willing to accept that there is a 20% chance
that we do not reject the null hypothesis when in fact the alternative hypothesis is true.

This use of a threshold for rejecting a null hypothesis gives rise to some important language:

• When 𝑝 < 0.05 (or whatever 𝛼 threshold is used), we say that we reject the null
hypothesis. This is often referred to as a “statistically significant” effect.

• When 𝑝 > 0.05 (or whatever 𝛼 threshold is used), we say that we do not have enough
evidence to reject the null hypothesis. Note that it is not appropriate to say that
we accept the null hypothesis.

Finally, there is one more piece of vocabulary that is important:

• Power = 1 – Type II error = 1 − 𝛽.

Power is the probability that we will reject the null hypothesis when in fact it is false. For
example, if our Type II error is 0.20, then we can say our test has 80% power for rejecting the
null hypothesis when the alternative hypothesis is true. Conversely, if a study has not been
designed well, it may be under-powered to detect an effect that is substantively important.
The power of a hypothesis test depends on:

• The magnitude of the effect (e.g. how big the true parameter value is in the population)
• Sample size (n)
• The type I error rate (𝛼)
• Sometimes other sample statistics

369



12.4 Conducting Hypothesis Tests

In practice, conducting a hypothesis test is straightforward:

• Specify your null and alternative hypotheses based upon your research question
• Specify an 𝛼 level based upon the Type I error rate you are willing to tolerate in the

context of your research question
• Determine the sampling distribution of the relevant estimator based upon the null hy-

pothesis
• Compute the test-statistic value observed in your data
• Calculate a p-value
• Reject the null hypothesis if the p-value is less than your pre-defined threshold 𝛼.

This last point is important – for the hypothesis test to be valid, you must pre-specify your
threshold, not after you have seen the p-value in your data.

12.4.1 Promotions Example

Let’s consider a study that investigated gender discrimination in the workplace that was pub-
lished in the “Journal of Applied Psychology” in 1974. This data is also used in the OpenIntro
series of statistics textbooks. Study participants included 48 male bank supervisors who at-
tended a management institute at University of North Carolina in 1972. The supervisors were
asked to assume the hypothetical role of a personnel director at the bank. Each supervisor
was given a job candidate’s personnel file and asked to decide whether or not the candidate
should be promoted to a manager position at the bank.

Each of the personnel files given to the supervisors were identical except that half of them
indicated that the candidate was female and half indicated the candidate was male. Personnel
files were randomly distributed to the 48 supervisors. Because only the candidate’s gender var-
ied from file to file, and the files were randomly assigned to study participants, the researchers
were able to isolate the effect of gender on promotion rates.

The moderndive package contains the data on the 48 candidates in the promotions data frame.
Let’s explore this data first:

promotions

# A tibble: 48 x 3
id decision gender

<int> <fct> <fct>
1 1 promoted male
2 2 promoted male
3 3 promoted male

370

https://www.openintro.org/


4 4 promoted male
5 5 promoted male
6 6 promoted male
7 7 promoted male
8 8 promoted male
9 9 promoted male
10 10 promoted male
# i 38 more rows

The variable id acts as an identification variable for all 48 rows, the decision variable indicates
whether the candidate was selected for promotion or not, while the gender variable indicates
the gender of the candidate indicated on the personnel file. Recall that this data does not
pertain to 24 actual men and 24 actual women, but rather 48 identical personnel files of which
24 were indicated to be male candidates and 24 were indicated to be female candidates.

Let’s perform an exploratory data analysis of the relationship between the two categorical
variables decision and gender. Recall that we saw in Section 2.8.3 that one way we can
visualize such a relationship is using a stacked barplot.

ggplot(promotions, aes(x = gender, fill = decision)) +
geom_bar() +
labs(x = "Gender on personnel file")

371



0

5

10

15

20

25

male female
Gender on personnel file

co
un

t decision

not

promoted

Figure 12.1: Barplot of relationship between gender and promotion decision.

Observe in Figure 12.1 that it appears that female personnel files were much less likely to be
accepted for promotion (even though they were identical to the male personnel files). Let’s
quantify these promotion rates by computing the proportion of personnel files accepted for
promotion for each group using the dplyr package for data wrangling:

promotion_props <- promotions %>%
group_by(gender) %>%
summarize(n = n(),

num_promoted = sum(decision == "promoted"),
pi_hat = num_promoted / n)

promotion_props

# A tibble: 2 x 4
gender n num_promoted pi_hat
<fct> <int> <int> <dbl>

1 male 24 21 0.875
2 female 24 14 0.583

372



So of the 24 male files, 21 were selected for promotion, for a proportion of 21/24 = 0.875
= 87.5%. On the other hand, of the 24 female files, 14 were selected for promotion, for a
proportion of 14/24 = 0.583 = 58.3%. Comparing these two rates of promotion, it appears
that males were selected for promotion at a rate 0.875 - 0.583 = 0.292 = 29.2 percentage points
higher than females.

The question is however, does this provide conclusive evidence that there is gender discrimi-
nation in this context? Could a difference in promotion rates of 29.2% still occur by chance,
even in a hypothetical world where no gender-based discrimination existed? To answer this
question, we can conduct the following hypothesis test:

𝐻0 ∶ 𝜋𝑚 = 𝜋𝑓

𝐻𝐴 ∶ 𝜋𝑚 ≠ 𝜋𝑓 ,

where 𝜋𝑓 is the proportion of female files selected for promotion and 𝜋𝑚 is the proportion
of male files selected for promotion. Here the null hypothesis corresponds to the scenario in
which there is no gender discrimination; that is, males and females are promoted at identical
rates. We will specify this test ahead of time to have 𝛼 = 0.05. That is, we are comfortable
with a 5% Type I error rate, and we will reject the null hypothesis if 𝑝 < 0.05.
Note the null hypothesis can be rewritten as

𝐻0 ∶ 𝜋𝑚 − 𝜋𝑓 = 0

by subtracting 𝜋𝑓 from both sides. Therefore, the population parameter we are interested in
estimating is 𝜋𝑚 − 𝜋𝑓 .

Recall from Chapter 11 that we calculate the standardized statistic under the null hypothesis
by subtracting the null value from the estimate and dividing by the standard error. Within
the context of hypothesis tests, where we are actually testing the null hypothesis to make
a decision (rather than simply computing a p-value), we usually refer to the t-statistic as a
test-statistic.

𝑡𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑁𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒
𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)

In this example, we have

𝑡𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 = ( ̂𝜋𝑚 − ̂𝜋𝑓) − 0

√𝜋𝑚(1−𝜋𝑚)
𝑛𝑚

+ 𝜋𝑓(1−𝜋𝑓)
𝑛𝑓

Because our null hypothesis states 𝜋𝑚 − 𝜋𝑓 = 0, we plug in 0 for our null value. In the
hypothesis test context, because we are assuming 𝜋𝑚 = 𝜋𝑓 , we can use all of the data to

373



compute one pooled proportion to plug in for 𝜋𝑚 and 𝜋𝑓 in the standard error formula instead
of using separate estimates ̂𝜋𝑚 and ̂𝜋𝑓 . This pooled estimate, which we will denote ̂𝜋0 can be
calculated by

̂𝜋0 = # 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠1 + #𝑜𝑓𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠2
𝑛1 + 𝑛2

.

Therefore, the test statistic is computed by

𝑡𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 = ( ̂𝜋𝑚 − ̂𝜋𝑓) − (𝜋𝑚 − 𝜋𝑓)
√ �̂�0(1−�̂�0)

𝑛𝑚
+ �̂�0(1−�̂�0)

𝑛𝑓

= ( ̂𝜋𝑚 − ̂𝜋𝑓) − 0
√ �̂�0(1−�̂�0)

𝑛𝑚
+ �̂�0(1−�̂�0)

𝑛𝑓

Think about this intuition for a second: since we are working under the hypothesis that the two
parameters 𝜋𝑚 and 𝜋𝑓 are equal, it is more efficient to use all of the information to estimate
one parameter than to use half of the data to estimate 𝜋𝑚 and the other half of the data to
estimate 𝜋𝑓 .

In the promotions example,
̂𝜋0 = 21 + 14

24 + 24 = 0.729.

We can compute the test statistic with the following code.

estimates <- promotion_props %>%
summarize(diff_pi_hat = abs(diff(pi_hat)),

pi_0 = sum(num_promoted)/sum(n),
SE = sqrt(pi_0*(1-pi_0)/24 + pi_0*(1-pi_0)/24))

estimates

# A tibble: 1 x 3
diff_pi_hat pi_0 SE

<dbl> <dbl> <dbl>
1 0.292 0.729 0.128

estimates %>%
transmute(test_stat = diff_pi_hat/SE)

# A tibble: 1 x 1
test_stat

<dbl>
1 2.27

Our test statistic is equal to 2.27, which we can now use to compute our p-value. Recall
from Table 10.1 that the standardized statistic for a difference in proportions follows a N(0,1)
distribution, so we can use pnorm() to compute the p-value.

374



p_value <- 2*pnorm(2.27, lower.tail = FALSE)
p_value

[1] 0.0232

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
Z

y

Figure 12.2: P-value for Promotions Hypothesis Test

Note that we set lower.tail = FALSE so that it gives us the probability in the upper tail of
the distribution to the right of our observed test-statistic, and we multiply by 2 because we
are conducting a two-sided hypothesis test (and the N(0,1) distribution is symmetric). The
p-value = 0.02 is represented by the shaded region in Figure 12.2.

We could also find the p-value using the function called prop.test(), similar to t.test(),
which will perform all of the above calculations for us when dealing with proportions.
prop.test() needs you to specify x, a vector (or column) of data containing the number
of successes (in this case promotions) for each group, and n, a vector (or column) of data
containing the total number of trials per group. Recall that we computed this information
in promotion_props. There is a something called the Yates’ continuity correction that is
applied by default to tests of proportions in prop.test(), but because we did not use this

375



correction when conducting the test “by hand”, we will override this default by setting
correct = FALSE for now. Let’s see prop.test() in action on our promotions data.

promotion_test <- prop.test(x = promotion_props$num_promoted,
n = promotion_props$n,
correct = FALSE)

promotion_test

2-sample test for equality of proportions without continuity correction

data: promotion_props$num_promoted out of promotion_props$n
X-squared = 5, df = 1, p-value = 0.02
alternative hypothesis: two.sided
95 percent confidence interval:
0.0542 0.5292
sample estimates:
prop 1 prop 2
0.875 0.583

Note that prop.test() returns values for ̂𝜋𝑚 (prop 1) and ̂𝜋𝑓 (prop 2), a 95% confidence
interval, and a p-value for a two.sided alternative hypothesis. We can verify that this returns
the same p-value of 0.023.

promotion_test$p.value

[1] 0.023

The p-value indicates that if gender discrimination did not exist (i.e. if the null hypothesis
is true that 𝜋𝑚 = 𝜋𝑓), then we would only expect to see a difference in proportions as large
as we did about 2% of the time. Because our p-value is less than our pre-specified level of
𝛼 = 0.05, we reject the null hypothesis and conclude that there is sufficient evidence of
gender discrimination in this context.

12.4.2 Movies example revisited

Let’s return to our movies example from Section 11.3.1, and this time set up a formal hypothesis
test. Recall that we were interested in the question of whether or not average IMDB ratings
differed for action movies (𝜇1) vs. romance movies (𝜇2). We can set up our hypotheses as
follows:

376



𝐻0 ∶ 𝜇1 = 𝜇2

𝐻𝐴 ∶ 𝜇1 ≠ 𝜇2

Note that we can re-write these as

𝐻0 ∶ 𝜇1 − 𝜇2 = 0
𝐻𝐴 ∶ 𝜇1 − 𝜇2 ≠ 0,

so that it’s clear our parameter of interest is a difference in two means. We will test this
hypothesis at the 95% confidence level (i.e. with 𝛼 = 0.05).
Recall that we already computed all the relevant values in Section 11.3.3 using t.test, but
we show the code again here.

romance <- movies_sample %>%
filter(genre == "Romance")

action <- movies_sample %>%
filter(genre == "Action")

movies_t.test <- t.test(x = romance$rating, y = action$rating)
movies_t.test

Welch Two Sample t-test

data: romance$rating and action$rating
t = 3, df = 66, p-value = 0.005
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.328 1.767
sample estimates:
mean of x mean of y

6.32 5.28

Because we obtain a p-value of 0.005 < 𝛼 = 0.05, we reject the null hypothesis and conclude
there is sufficient evidence that action and romance movies do not recieve the same average
ratings in the IMDB population database.

377



We could also conduct a hypothesis test for this same problem in the regression framework we
demonstrated in Section 11.3.4. Recall we fit the model

̂𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑏0 + 𝑏1 ∗ 𝑔𝑒𝑛𝑟𝑒,

and said 𝑏1 could be interpreted as the difference in means. Recall that the slope 𝑏1 in our
sample is an estimate of the population slope 𝛽1. Note that assuming there is no difference in
means implies 𝛽1 = 0. Therefore in this framework, our hypotheses would be:

𝐻0 ∶ 𝛽1 = 0
𝐻𝐴 ∶ 𝛽1 ≠ 0

Let’s look again at the results of this model.

movies_model <- lm(rating ~ genre, data = movies_sample)
summary(movies_model)

Call:
lm(formula = rating ~ genre, data = movies_sample)

Residuals:
Min 1Q Median 3Q Max

-4.022 -1.135 0.101 1.078 3.278

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.275 0.265 19.92 <0.0000000000000002 ***
genreRomance 1.047 0.364 2.88 0.0054 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.5 on 66 degrees of freedom
Multiple R-squared: 0.111, Adjusted R-squared: 0.098
F-statistic: 8.28 on 1 and 66 DF, p-value: 0.0054

We again see the p-value of 0.005, which leads us to conclude there is a true difference in means
in the population.

378



12.4.3 Ride share example revisited

Let’s return to our ride share price example from Section 11.4. Recall that we wanted to
know whether 𝜇𝐵 = $19.50. We could test this with the following hypotheses, again specifying
𝛼 = 0.05 in advance:

𝐻0 ∶ 𝜇𝐵 = 19.50
𝐻𝐴 ∶ 𝜇𝐵 ≠ 19.50

rides_B <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQpOEBZ5zXfOnoIeRxql4X1-djLqCZRkNg4X1yqhdYXCqm_exyaeYDgWaj4KJ2FgpqPZPoDvD71gYEr/pub?gid=0&single=true&output=csv")

rides_t.test <- t.test(rides_B$price, mu = 19.5)
rides_t.test$statistic

t
1.53

rides_t.test$p.value

[1] 0.13

Recall that this produced a test-statistic of 1.529 and a p-value of 0.13. Therefore because
𝑝_𝑣𝑎𝑙𝑢𝑒 = 0.13 > 𝛼 = 0.05, we do not reject the null hypothesis. It is important to note that
we do not conclude that the null hypothesis is true; we can only simply state that there is not
sufficient evidence to overturn it.

We also considered this problem in the regression framework with the intercept only model
𝑝𝑟𝑖𝑐𝑒 = 𝑏0. In this case, our hypotheses are:

𝐻0 ∶ 𝛽0 = 19.50
𝐻𝐴 ∶ 𝛽0 ≠ 19.50

Recall that in order to get the correct test statistic and p-value for this null value (as opposed
to the defaul null value of zero in regression), we had to center our variable.

rides_B <- rides_B %>%
mutate(price_centered = price - 19.5)

ride_model_2 <- lm(price_centered ~ 1, data = rides_B)
summary(ride_model_2)

379



Call:
lm(formula = price_centered ~ 1, data = rides_B)

Residuals:
Min 1Q Median 3Q Max

-12.878 -3.789 0.315 3.934 10.873

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.792 0.518 1.53 0.13

Residual standard error: 5.18 on 99 degrees of freedom

This again gives the p-value of 0.13 which leads us to fail to reject 𝐻0. There is insufficient
evidence to conclude that company B’s prices differ from $19.50 on average.

12.5 One-tailed hypothesis tests

All the examples in Section 12.4 were what are call two-tailed hypothesis tests. This means
that the rejection region is split into both the upper and lower tail. A two-tailed test is used
when the hypothesis claim includes equality. Then we are concerned with the chance of being
either above or below the claim.

But what if our hypothesis is that the test statistic is less than a claimed value or greater
than a claimed value? In that case we are only concerned with one direction and it is more
appropriate to use a one-tailed hypothesis test.

12.5.1 Ride share example revisited again

Consider the ride share example from Sections 11.4 and 12.4.3. We want to test the claim if
the average price of rides at company B is equal to $19.50. To test this claim we obtain a
random sample of 100 rides and compare the sample mean. Our claim again is 𝜇𝐵 = 19.50,
meaning we are concerned if their price is different in either direction. Recall, we write our
hypothesis test as:

𝐻0 ∶ 𝜇𝐵 = 19.50
𝐻𝐴 ∶ 𝜇𝐵 ≠ 19.50

380



What if instead, we want to test the claim that the average price of rides at company B is
greater than $19.50? In mathematical notation this claim is 𝜇𝐵 > 19.50. We formulate the
hypothesis as follows:

𝐻0 ∶ 𝜇𝐵 ≤ 19.50
𝐻𝐴 ∶ 𝜇𝐵 > 19.50

It’s important to note that the null hypothesis always contains equality! Now our rejection
region is strictly in the upper tail of the distribution. Let’s test this claim, again specifying
𝛼 = 0.05 in advance.

rides_one.tail <- t.test(rides_B$price, mu = 19.5, alternative = "greater")
rides_one.tail$statistic

t
1.53

rides_one.tail$p.value

[1] 0.0648

The test-statistic is 1.529, the same test statistic from our two-tailed test in Section 12.4.3.
This means the test-statistic for a one-tailed test compared to a two-tailed test will always be
the same. What is different is our p-value of 0.065. The p-value for a one-tailed test is half
the p-value of a two-tailed test. We still compare our 𝑝_𝑣𝑎𝑙𝑢𝑒 to our pre-defined 𝛼. Since our
𝑝_𝑣𝑎𝑙𝑢𝑒 = 0.065 > 𝛼 = 0.05, we do not reject the null hypothesis. In this instance we came
to the same conclusions, but that is not always the case.

12.5.2 Formulating the Hypotheses Overview

When formulating the hypothesis you first want to state the claim in mathematical notation.
If the claim contains equality, it belongs in the null hypothesis and if it does not it belongs in
the alternative hypothesis. Next decide if the claim is a two-tailed, right-tailed, or left-tailed
test. Table 12.5 provides an overview of the three possible scenarios.

381



0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
Z

y

two−tailed test

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5 5.0
Z

y

one−tailed test

Figure 12.3: P-value for Ride Share Hypothesis in Two-tail and One-tail Test

382



Table 12.5: Formulating the Null and Alternative Hypothesis

Table 12.5: Formulating the Null and Alternative Hypothesis

Choosing a one-tailed test for the sole purpose of attaining significance is not appropriate. For
example, if you formulate a two-tailed test at the 𝛼 = 0.05 significance level and obtain a
p-value of 0.051 you fail to reject the null. You cannot then change the test to a one-tail test
in order to obtain significance. This will lead to questionable and invalid results.

12.6 More advanced points to consider

As this is an introductory book, we have introduced some concepts but not developed them in
full detail. This does not mean that there are not things to say about these – more that there
is simply too much to say at this time. These topics include:

• Planning studies: If you are planning a study, you need to determine the sample size
𝑛 that is sufficient for minimizing Type II error (i.e, maximizing power). To do so, you
will need to know the sampling distribution of the estimator not just under the null
hypothesis, but also under the alternative hypothesis. You will need to specify the size
of the outcome, difference, or relationship you are seeking to understand. From this, for
a given Type II error level, you can determine the minimum sample size you will need.

• Multiple testing: We introduced the use of hypothesis testing here with a single test.
When you are analyzing data, however, you often conduct multiple hypothesis tests on
the same data. By conducting multiple hypothesis tests, in combination Type I error
(what is called “familywise error rate”) is typically higher, and sometimes much higher,

383



than the Type I error of each test in isolation. There are procedures you can use to
adjust for this.

12.7 American Statistical Association (ASA) Statistical Standards

In the past several years, the use of p-values for decision making has come under increased
scrutiny by both the statistical and applied research communities. The problem is with the
use of the criteria “p < .05” to determine if an effect is “statistically significant”, and the
use of this threshold to determine if research is worthy of publication in scientific journals.
In many fields, publication standards have focused on the novelty of results (disincentivizing
researchers to replicate previous findings) and have required that there be “an effect” found
(meaning, statistically significant effect). There have been several negative effects of this
scientific system as a result, including:

• Publication bias: This results when only statistically significant results are published
and non-significant results are not published. This biases findings towards non-null
effects. For example, it means that a paper showing that an intervention is effective (p
< .05) is likely to be published, while one showing that the intervention has no effect (p
> .05) is not.

• P-hacking: Researchers often measure and collect multiple outcomes when conducting a
study and often estimate many different models. The incentive is thus to find something
with p < .05, even if the initially hypothesized finding is not significant. But conducting
many different hypothesis tests results is statistically unsound.

• HARK-ing: This acronym means ’Hypothesizing After Results are Known”. In the the-
ory of hypothesis testing, a researcher first defines a null hypothesis, designs a study to
test this (with a pre-specified p-value threshold), and then decides based upon these find-
ings. Scientific publishing standards have in many fields focused on writing up reported
findings in this framework, with the beginning of a paper stating hypotheses based on
the previous literature, followed by methods and results, with little room for exploratory
findings. Thus, if a researcher collected many measures and conducted many analyses
and found an interesting exploratory result, the only way to write about this result for
publication was to pretend that the finding was hypothesized in advance and to present
the results in this light.

In response to these concerns, an Open Science movement has formed, urging researchers
to:

• Ensure that their results are reproducible by providing both their data and code for
others to check. (Note that the use of R Markdown for report writing is one way to make
this practice easy to implement in practice.)

384



• Pre-register studies and hypotheses in advance of analysis. This holds scientists
accountable for which outcomes and results were actually hypothesized (confirmatory
analyses) versus those that are exploratory.

• Focus publication less on the results of a study and more on the design of a study. Many
journals have moved towards registered reports – a process through which a paper
is submitted to a journal before the study has begun or the data has been collected,
specifying the study design and analytical models that will be used. This report goes
under peer review and, if accepted, the results are later accepted to the journal regardless
of their statistical significance.

In response to this movement, the American Statistical Association has convened several work-
ing groups and journal issues devoted to discussing improvements for practice. In an overview
of a special issue in the American Statistician, the ASA president (Wasserstein) and colleagues
Shirm and Lazar (2019) provide the following suggested guideline for practice:

ATOM: Accept uncertainty. Be thoughtful, open, and modest.

Briefly, what they mean here is:

• A: Uncertainty exists everywhere in the world. Statistical methods do not rid the world of
uncertainty. Accepting uncertainty requires us to view statistical analyses as incomplete
and less certain than is the norm in much of scientific practice.

• T: Statistical thoughtfulness requires researchers to be clear when their goals are confir-
matory versus exploratory, to invest in collecting solid data, and to consider the sensi-
tivity of their findings to different analysis methods.

• O: Researchers should embrace the open-science approaches given above, as well as the
role that expert judgement plays in the interpretation of results. While objectivity is
the goal of science, the process of conducting science includes subjectivity at every stage,
including analyses.

• M: Researchers should clearly convey the limitations of their work. All statistical meth-
ods require assumptions and have limitations. Remember that scientific significance is
broader than statistical significance – that statistics is only one part of the scientific
process.

These ATOM ideas have undergirded the introduction to statistics we provided in this book.
We began by giving you a solid foundation in exploratory data analysis – not focused on
statistical significance – and then proceeded to introduce statistical theory, including questions
of causality, generalizability, and uncertainty. Only after all of this did we introduce you to
p-values, and we save decision-making – the p < .05 criterion – until last. We did so in hopes
that with a strong foundation, you’d be able to think critically when applying statistical
decision-making criterion, and would understand when descriptive versus inferential statistics
are required.

385



12.8 Exercises

12.8.1 Conceptual

Exercise 12.1. You reject the null hypothesis when the null hypothesis is true. What type
of error did you make?

a) Type I Error
b) Type II Error

Exercise 12.2. Can you minimize both Type I and II errors at the same time?

a) Yes, Type I and Type II errors are independent
b) Yes, Type I and Type II errors increase and decrease together
c) No, Type I errors are always smaller than Type II errors
d) No, one type of error will be minimized at the expense of the other type

Exercise 12.3. Let’s say we choose an alpha level of 𝛼 = 0.01. Then, when 𝑝 > 0.01 we
accept the null hypothesis.

a) True
b) False

Exercise 12.4. You must specify your 𝛼 level before calculating your p-value to ensure the
validity of your hypothesis test.

a) True
b) False

Exercise 12.5. Which of the following does the power of a hypothesis test depend upon?
Select all that apply.

a) 𝛼
b) 𝑛
c) 𝛾
d) 𝑠

Exercise 12.6. If the alternative hypothesis is true, which type of error could you still make?

a) Type I Error
b) Type II Error
c) Both a Type I and a Type II error
d) You cannot make an error if the alternative hypothesis is true

386



Exercise 12.7. Consider a two-tailed hypothesis test to determine if there is a difference
between two proportions with a significance value in terms of the critical value of ±1.96. Your
computed test statistic is 1.99. What is your decision?

a) Fail to reject the null, there is no difference between the proportions.
b) Fail to reject the null, there is a difference between the proportions.
c) Reject the null, there is no difference between the proportions.
d) Reject the null, there is a difference between the proportions.

Exercise 12.8. In a two-tailed hypothesis test for a mean, what happens to the test statistic
when we decrease the sample size from 200 to 50? Assuming no other alterations happen
except size.

a) becomes larger
b) becomes smaller
c) no change
d) impossible to tell with given information

Exercise 12.9. You construct a hypothesis test to determine if a plant is able to grow taller
with a new fertilized soil treatment compared to untreated soil. You compute the average
height of the plants after one month for the treatment plants and the average height of the
plants after one month for the control (untreated) plants and compare their differences. Which
of the following could be your null hypothesis?

a) ̄𝑥𝑡𝑟𝑒𝑎𝑡 − ̄𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0
b) ̄𝑥𝑡𝑟𝑒𝑎𝑡 − ̄𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 0
c) 𝜇𝑡𝑟𝑒𝑎𝑡 − 𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0
d) 𝜇𝑡𝑟𝑒𝑎𝑡 − 𝜇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 0

Exercise 12.10. Suppose a person is being tested for HIV. Specify the null and alternative
hypotheses. After that describe the 4 possible scenarios and their consequences.

12.8.2 Application

For the following problems, state your hypothesis test and interpret your results in the context
of the problem.

Exercise 12.11. Using the nba dataset, determine if the player’s teams scored more than 100
points per game on average. Evaluate at the 𝛼 = 0.02 significance level.

Exercise 12.12. A basketball superfan claims that Michael Jordan scored more points per
game on average than LeBron James. Use the nba dataset to determine if this superfan is
correct.

387



Exercise 12.13. Using the nba dataset, determine if Kobe Bryant won a majority of his
games. Evaluate at the 𝛼 = 0.1 significance level.

Exercise 12.14. Using the titanic dataset, determine if the 1st class ticket passengers or
3rd class ticket passengers had a higher survival rate.

12.8.3 Advanced

Exercise 12.15. Pick one player, is there a linear relationship between the player’s points
scored and game score? If there is one, then what is the magnitude of the relationship?

Evaluate using the following linear model:

𝑔𝑚𝑠𝑐 = 𝛽0 + 𝛽1(𝑝𝑡𝑠)

388



13 Putting it all together

Over the course of this book, you have been introduced to methods for data cleaning, visualiza-
tion, and analysis (Part I) and the underlying theory of estimation, generalizability, and causal
inference (Parts II & III). In this chapter, we put all of these methods and theory together,
illustrating how descriptive and inferential statistics can be used with real data.

Packages Needed

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them).
If needed, read Section 1.3 for information on how to install and load R packages.

library(tidyverse)

13.1 A general process for using statistics

In general, there are two types of analyses that statistics are used for: Exploratory and Con-
firmatory.

Exploratory research typically doesn’t start with a clear question – it starts with data.
For example, maybe you discover that it is possible to download data regarding all of the
movies found in IMDB. In this case, just as in the beginning of this book, you explore the
data visually and using summary statistics, maybe even comparing groups, variables, and
relationships between them. Only after you’ve explored do you have a clear sense of some
questions that you might want to ask, like: do action films gross more, on average, than
comedies? Has this trend changed over time? In many cases, these questions can be answered
just using descriptive statistics.

Confirmatory research starts with a clear question. This research typically builds on pre-
vious, exploratory research, and may involve the collection of data – e.g., via a survey or an
experiment. In confirmatory research, after clearly defining the questions, you need to deter-
mine how data will be used to answer to these questions. For example, perhaps you want to
know if allowing students to use laptops in class increases (or reduces) learning. To answer
this, you randomly assign students to use laptops or not in class, and at the end of the semester

389



you compare grades between the two groups. Determining if there is a difference here requires
inferential statistics – e.g., p-values and hypothesis tests.

In either case, you need to pay attention to issues regarding causality and generalizability.
When you use descriptive statistics, you are limiting your generalizations to the sample,
not making any claims beyond the data you have in front of you. When you use inferential
statistics, you are implicitly generalizing to other samples like the one that you have – i.e.,
gathered in the same way. But even then, this population needs to be clearly defined, indicat-
ing where the results generalize and where they do not. Similarly, if your question involves
comparisons between groups or relationships between variables, you need to determine if you
can (not just if you want to) infer causality from your data.

In the remainder of this chapter, we provide three examples illustrating confirmatory re-
search questions. These complement the data analyses provided in the first part of the book
that focus on exploratory research.

13.2 Example: Treatment effect

The Tennessee STAR experiment was conducted in the 1980s in order to determine if class
size effects student learning. In each school in the experiment, Kindergarten students were
randomized to either be in a small classroom (13-17 students) or a regular sized classroom
(22-27 students). This design was replicated in about 80 schools throughout the state. For
information on the study, see here.

For this example, we focus on data from a single school. In this school, there were 137
Kindergarten students that were randomly divided into 7 classes: 3 “small” classes and 4
“regular” classes. Teachers were also randomly assigned to these classrooms. At the end of the
year, students were tested and achievement scores obtained. Let’s load this data and take a
look at it.

star_data <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTluVgdD7hdPLkKPMpN3OZjpBdZ1HloCGEQ1abcgfcWJHGYQppUGyXsGaPz74XQRwaMobDFLZgN3caU/pub?gid=0&single=true&output=csv")
glimpse(star_data)

Rows: 137
Columns: 6
$ school_id <dbl> 169229, 169229, 169229, 169229, 169229, 169229, 169229, 1692~
$ class_id <dbl> 16922901, 16922901, 16922901, 16922901, 16922901, 16922901, ~
$ reading <dbl> 461, 527, 500, 474, 500, 545, 451, 442, 472, 460, 470, 463, ~
$ math <dbl> 559, 547, 602, 478, 547, 602, 478, 513, 520, 520, 506, 559, ~
$ class_si <dbl> 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, ~
$ small <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ~

390

https://en.wikipedia.org/wiki/Class-size_reduction


This dataset includes 6 variables:

• school_id - school ID, which is the same for every student in the dataset, since we’re
only looking at one school

• class_id - indicates which of the 7 classes the student belongs to
• reading - end-of-year reading achievement score
• math - end-of-year math achievement score
• class_si - number of students in the classroom
• small - indicator variable for whether or not the class is “small” or “regular” (1 = small,

0 = regular)

Question: Did the type of class (small, regular) affect student math achievement, on average,
in this school?

Model: To answer this, we can use a regression model, treating small as a dummy variable:

𝑚𝑎𝑡ℎ = 𝑏0 + 𝑏1 ∗ 𝑠𝑚𝑎𝑙𝑙

Null Hypothesis: We can use a stochastic proof by contradiction in order to prove that
there is a difference. To do so, we begin by assuming that there is no difference (our null)
and then look to see if our data shows a difference large enough to contradict this.

𝐻0 ∶ 𝛽1 = 0
𝐻𝐴 ∶ 𝛽1 ≠ 0

Notice here that the population parameter we are interested in is 𝛽1, which we estimate by
the sample statistic 𝑏1 in our model. Because the treatment of having small class sizes is fairly
costly (as it would require hiring and paying more teachers), we want to make sure we have
pretty strong evidence that it is effective before recommending that it should be adopted as
a policy. Therefore, we design our test to have a Type I error of 𝛼 = 0.01. That is, we are
only willing to tolerate a 1% probability of falsely finding the treatment to be effective when
in fact it is not, so we will only reject the null hypothesis if 𝑝 < 0.01.
Estimate: Our estimated model is found in the table below.

star_model <- lm(math ~ small, data = star_data)
summary(star_model)

Call:
lm(formula = math ~ small, data = star_data)

391



Residuals:
Min 1Q Median 3Q Max

-99.99 -27.45 -2.99 28.01 134.01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 491.99 4.68 105.23 <0.0000000000000002 ***
small 19.46 7.82 2.49 0.014 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 43.9 on 135 degrees of freedom
Multiple R-squared: 0.0439, Adjusted R-squared: 0.0368
F-statistic: 6.2 on 1 and 135 DF, p-value: 0.014

In this output, we can see that on average, students in small classes scored 19.46 points more
than students in the regular-sized classes. We can use the values from the model output to
compute the statistic

𝑡𝑒𝑠𝑡_𝑠𝑡𝑎𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑁𝑢𝑙𝑙 𝑣𝑎𝑙𝑢𝑒
𝑆𝐸(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒) = 𝑏1 − 0

𝑆𝐸(𝑏1) = 19.46
7.82 = 2.49,

which will help us to determine the probability that we would see a value this large if in
fact there was no effect of class size. The p-value of 0.014 reported in the regression output
indicates that we would see an effect this large if there was actually no effect in about 1.4%
of samples. Note this is the same p-value we would obtain by using the pt() function, our
t value (i.e. 𝑡𝑒𝑠𝑡_𝑠𝑡𝑎𝑡), and the appropriate degrees of freedom: pt(2.49, df = (137 -
2), lower.tail = FALSE)*2 = 0.014.

Conclusion: Since the p-value is 1.4%, which is greater than 1% (𝑝 > 𝛼), we fail to reject
our null hypothesis and therefore conclude that there is insufficient evidence that class-size
reduction increased learning. Note that because this school was not randomly selected from a
population, it is difficult to generalize the results beyond this school.

13.3 Example: Estimate a proportion

The General Social Survey is an annual probability survey of American adults. Randomly
selected adults are contacted via telephone and asked questions regarding their attitudes and
experiences. In 2002, one question asked,

“People differ in their ideas about what it takes for a young person to become an adult these
days. How important is it for them to be no longer living in their parents’ household?”

392



The GSS showed that 29% of those asked felt that it was “Extremely important” for adults to
no longer live with their parents. You can see this data here.

In 2008, there was an economic downturn and increasing numbers of young adults returned to
living with their parents. This led a researcher interested in understanding changing attitudes
to ask: Are the attitudes among Beta University students in 2019 different than these trends
in 2002? In order to answer this, the researcher conducted a survey of 100 students at the
university. Let’s take a look at this data.

Rows: 100
Columns: 1
$ important <dbl> 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, ~

The variable important has a value of 1 if the student answered “extremely important” and
a value of 0 otherwise.

Question: Do Beta University students in 2019 think it is as important for a young person
to not live with their parents as people did in 2002?

Null Hypothesis: We wish to know if the average percent of students in 2019 is different
from that in 2002. To answer this, we conduct a stochastic proof by contradiction, in
which we assume that the percent of students in 2019 would be 29% just as in 2002. Our null
hypothesis is thus that the proportion is 0.29.

𝐻0 ∶ 𝜋 = 0.29
𝐻𝐴 ∶ 𝜋 ≠ 0.29

Given the cost of collecting this data and associated trade-offs, we decided to set our Type I
error at 10%.

Estimate: Let’s use prop.test() to obtain our estimate. Recall that prop.test() requires
an argument x that gives the counts of “successes,” which in this case means the number
of people who responded “extremely important” (i.e. important == 1 in the data), and an
argument n for the total number of “trials,” which in this case means the total number of
people surveyed (i.e. n = 100).

beta_U_summary <- beta_U_data %>%
summarize(important = sum(important),

n = n())
beta_U_summary

393

https://gssdataexplorer.norc.org/variables/2896/vshow


# A tibble: 1 x 2
important n

<dbl> <int>
1 32 100

The default for prop.test() assumes the null hypothesis is 𝜋 = 0.5, so we need to override
that here by specifying p = 0.29.

prop.test(x = beta_U_summary$important, n = beta_U_summary$n, p = 0.29)

1-sample proportions test with continuity correction

data: beta_U_summary$important out of beta_U_summary$n, null probability 0.29
X-squared = 0.3, df = 1, p-value = 0.6
alternative hypothesis: true p is not equal to 0.29
95 percent confidence interval:
0.232 0.422
sample estimates:

p
0.32

We see that the estimate from our sample is ̂𝜋 = 0.32. This results in a p-value of 0.6. That
is, if in fact 29% of Beta University undergraduates felt strongly that young adults needed to
not live at home, then we would observe a value this different (32%) in our sample in about
60% of random samples collected in the same way.

Conclusion: Since our p-value is greater than the stated 10% Type I error, we would not
reject our null hypothesis. We can thus conclude that there is not enough evidence to
suggest that the percent of students that feel that young adults should not live at home is
different at Beta University in 2019 than in the general public in 2002. Note that because the
confidence interval [0.232, 0.422] contains the hypothesized value of 0.29, this is also an
indication that there is insufficient evidence to overturn the null hypothesis. Importantly, this
result only generalizes to all Beta University students if the sample was collected randomly. If
it was collected based upon convenience, these results might not generalize. More information
would be required to determine this.

13.4 Example: Estimate the relationship between two variables

Let’s return to the Lego dataset we explored in the beginning of this course. One of the authors
of this book is both a huge Harry Potter fan and a Lego connoisseur. After buying a few of

394



these sets, he began to wonder about the relationship between the number of minifigures in
these sets and the price of the set. To answer this, he returned to the legosets data, focusing
only on the subset relevant to this question.

Question: What is the relationship between the number of minifigures in a Harry Potter lego
set and the price of the set?

Let’s load in the data, create the relevant Harry Potter subset, and skim the relevant variables.
Recall that USD_MSRP is our price variable in US dollars.

legosets <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSwB0bCE4w7qrep4lIC-QVyF307mxFNUYQ08LZqiFsC_ks1bt_ZEJqiTEo7SaCl6g4TQ8gig2ZIfQJu/pub?gid=0&single=true&output=csv")

legosets_HP <- legosets %>%
filter(Theme == "Harry Potter")

skim_with(numeric = list(hist = NULL))
legosets_HP %>%
select(USD_MSRP, Minifigures) %>%
skim()

Skim summary statistics
n obs: 53
n variables: 2

�� Variable type:integer ����������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100

Minifigures 2 51 53 3.71 2.62 1 2 3 4 12

�� Variable type:numeric ����������������������������������������������������������
variable missing complete n mean sd p0 p25 p50 p75 p100
USD_MSRP 0 53 53 34.36 33.86 0 10 20 49.99 149.99

Model: A question about ‘relationships’ in statistics typically means that we are interested
in the slope in a regression, i.e.,

̂𝑈𝑆𝐷_𝑀𝑆𝑅𝑃 = 𝑏0 + 𝑏1 ∗ 𝑀𝑖𝑛𝑖𝑓𝑖𝑔𝑢𝑟𝑒𝑠

This model can be estimated in R using the following syntax:

lego_model <- lm(USD_MSRP ~ Minifigures, data = legosets_HP)

395



Note that we do not necessarily need to use a hypothesis test here to make a decision about
anything; rather, we are interested in simply estimating the magnitude of the relationship
between minifigures and price in the population of Harry Potter legosets. Therefore, we can
simply construct a confidence interval, rather than conducting a hypothesis test.

Estimate: We can obtain our estimate 𝑏1 from our data using summary(lego_model), which
provides us an estimate of this relationship.

summary(lego_model)

Call:
lm(formula = USD_MSRP ~ Minifigures, data = legosets_HP)

Residuals:
Min 1Q Median 3Q Max

-50.87 -8.44 0.20 4.87 81.29

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.45 4.87 -0.71 0.48
Minifigures 10.54 1.08 9.79 0.0000000000004 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.9 on 49 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.662, Adjusted R-squared: 0.655
F-statistic: 95.9 on 1 and 49 DF, p-value: 0.000000000000403

Here the slope 𝑏1 = 10.54; this means that for every additional minifigure in a Harry Potter
lego set, the average price increases by $10.54. How confident are we in this estimate? Is it
precise? We can use the function confint() to construct a 95% confidence interval.

confint(lego_model)

2.5 % 97.5 %
(Intercept) -13.24 6.33
Minifigures 8.38 12.70

Conclusion: We are 95% confident that the true relationship between minifugures and price,
𝛽1, is captured in the interval [8.38, 12.70]. Notably, this relationship cannot be generalized
to all lego sets – only Harry Potter legosets.

396



13.5 Final thoughts

As we wrap up this course, take a moment to reflect on what you have learned. You now know
how to explore, describe and visualize data. You also know some of the basic principles of
statistical theory – the role of randomization and chance, the idea that your data is one version
of hypothetically many other versions you could have, the fundamentals of how to use data to
test and prove claims. And you know how to apply these principles to real data, to understand
uncertainty, to determine when patterns are common or rare, and to test hypotheses.

397



References

Grolemund, Garrett, and Hadley Wickham. 2016. R for Data Science. http://r4ds.had.co.nz/.
Ismay, Chester. 2016. Getting Used to r, RStudio, and r Markdown. http://ismayc.github.io/

rbasics-book.
Robbins, Naomi. 2013. Creating More Effective Graphs. Chart House.
Waring, Elin, Michael Quinn, Amelia McNamara, Eduardo Arino de la Rubia, Hao Zhu, and

Shannon Ellis. 2022. Skimr: Compact and Flexible Summaries of Data. https://CRAN.R-
project.org/package=skimr.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software Volume 59 (Issue 10).
https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf.

———. 2021. Nycflights13: Flights That Departed NYC in 2013. https://github.com/hadley/
nycflights13.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi,
Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2022. Ggplot2: Create
Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.
org/package=ggplot2.

Wickham, Hadley, and Maximilian Girlich. 2022. Tidyr: Tidy Messy Data. https://CRAN.R-
project.org/package=tidyr.

Wilkinson, Leland. 2005. The Grammar of Graphics (Statistics and Computing). Secaucus,
NJ, USA: Springer-Verlag New York, Inc.

398

http://r4ds.had.co.nz/
http://ismayc.github.io/rbasics-book
http://ismayc.github.io/rbasics-book
https://CRAN.R-project.org/package=skimr
https://CRAN.R-project.org/package=skimr
https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf
https://github.com/hadley/nycflights13
https://github.com/hadley/nycflights13
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr


A Statistical Background

A.1 Common statistical terms

A.1.1 Mean

The mean, also known as (AKA) the average, is the most commonly reported measure of
center. It is commonly called the “average” though this term can be a little ambiguous. The
mean is the sum of all of the data elements divided by how many elements there are. If we
have 𝑛 data points, the mean is given by:

𝑥 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛
𝑛

Note that you will often see shorthand notation for a sum of numbers using ∑ notation. For
example, we could rewrite the formula for ̄𝑥 as:

̄𝑥 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛
𝑛 = ∑𝑛

𝑖=1 𝑥𝑖
𝑛

We’ve simply replaced the subscript on each 𝑥 with a generic index 𝑖, and use the ∑ notation to
indicate we are summing 𝑥s with indices (i.e. subscripts) that go from 1 to 𝑛. When summing
numbers in statistics, we’re almost always dealing with indices that start with the value 1 and
go up to a value equal to a sample size (e.g. 𝑛), so often you will see an even more shorthand
version, where it’s assumed you’re summing from 𝑖 = 1 to 𝑖 = 𝑛:

̄𝑥 = ∑ 𝑥𝑖
𝑛

A.1.2 Median

The median is calculated by first sorting a variable’s data from smallest to largest. After
sorting the data, the middle element in the list is the median. If the middle falls between two
values, then the median is the mean of those two values.

399



A.1.3 Standard deviation

We will next discuss the standard deviation of a sample dataset pertaining to one variable.
The formula can be a little intimidating at first but it is important to remember that it is
essentially a measure of how far to expect a given data value is from its mean:

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √(𝑥1 − 𝑥)2 + (𝑥2 − 𝑥)2 + ⋯ + (𝑥𝑛 − 𝑥)2

𝑛 − 1 = √∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

𝑛 − 1

A.1.4 Five-number summary

The five-number summary consists of five values: minimum, first quantile AKA 25th per-
centile, second quantile AKA median AKA 50th percentile, third quantile AKA 75th, and
maximum. The quantiles are calculated as

• first quantile (𝑄1): the median of the first half of the sorted data
• third quantile (𝑄3): the median of the second half of the sorted data

The interquartile range is defined as 𝑄3 − 𝑄1 and is a measure of how spread out the middle
50% of values is. The five-number summary is not influenced by the presence of outliers in
the ways that the mean and standard deviation are. It is, thus, recommended for skewed
datasets.

A.1.5 Distribution

The distribution of a variable/dataset corresponds to generalizing patterns in the dataset. It
often shows how frequently elements in the dataset appear. It shows how the data varies and
gives some information about where a typical element in the data might fall. Distributions
are most easily seen through data visualization.

A.1.6 Outliers

Outliers correspond to values in the dataset that fall far outside the range of “ordinary”
values. In regards to a boxplot (by default), they correspond to values below 𝑄1 − (1.5 ∗ 𝐼𝑄𝑅)
or above 𝑄3 + (1.5 ∗ 𝐼𝑄𝑅).
Note that these terms (aside from Distribution) only apply to quantitative variables.

400



B Exercise solutions

library(ISDSdatasets)
library(tidyverse)
library(moderndive)
library(lubridate)
library(patchwork)

B.1 Chapter 1

Exercise 1.1 b. Quarto Document

Exercise 1.2 a. error

Exercise 1.3 a. TRUE

Exercise 1.4 a. TRUE

Exercise 1.5 b. FALSE

Exercise 1.6 e. 15

Exercise 1.7 b. Data on a flight

Exercise 1.8 c. quantitative

Exercise 1.9

z <- 12*31
add_on <- 12
z + add_on

[1] 384

Exercise 1.10

401



glimpse(titanic)

The dataset has 418 rows (passengers) and 11 variables. The variables identify various pas-
senger information such as name, age, sex, ticket class, number of siblings/spouses on board,
fare cost, port the left from, and whether or not they survived.

Exercise 1.11

head(titanic)

# A tibble: 6 x 11
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare

<dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
1 892 0 3 Kelly, Mr. J~ male 34.5 0 0 330911 7.83
2 893 1 3 Wilkes, Mrs.~ fema~ 47 1 0 363272 7
3 894 0 2 Myles, Mr. T~ male 62 0 0 240276 9.69
4 895 0 3 Wirz, Mr. Al~ male 27 0 0 315154 8.66
5 896 1 3 Hirvonen, Mr~ fema~ 22 1 1 31012~ 12.3
6 897 0 3 Svensson, Mr~ male 14 0 0 7538 9.22
# i 1 more variable: Embarked <chr>

The head() function shows the first 6 rows of the dataset. Based on this, I expect the tail()
function to show the last 6 rows of the dataset.

Exercise 1.12

unique(titanic$Embarked)

[1] "Q" "S" "C"

There are 3 unique ports of embarkation: Q, S, C (Queenstown, Southampton, Cherbourg).

B.2 Chapter 2

Exercise 2.1 b. geom_line(), c. geom_col(), e. geom_histogram()

Exercise 2.2 d. geom_point()

Exercise 2.3 b. changing the transparency, e. jittering the points

402



Exercise 2.4 b. When you want to split a particular visualization of variables by another
variable

Exercise 2.5 b. geom_col()

Exercise 2.6 a. grouped boxplot

Exercise 2.7 b. linegraph

Exercise 2.8 c. scatterplot

Exercise 2.9 d. boxplot

Exercise 2.10 There is a strong positive non-linear (exponential) relationship. We can see by
the blue line (line of best fit) that the data does not match a linear line. This tells us that as
someone spends more time in the grocery store, they also spend more money.

Exercise 2.11 The histogram is unimodal and left skewed.

Exercise 2.12 a.

Exercise 2.13

ggplot(
covid_sub,
aes(x = date, y = new_confirmed, color = state_abbr)
) +
geom_line()

403



0

20000

40000

Jul 01 Jul 15 Aug 01 Aug 15 Sep 01
date

ne
w

_c
on

fir
m

ed

state_abbr

FL

IL

Florida has significantly more covid cases than Illinois in the months of July and August 2021.
The spikes to 0 could indicate testing did not occur on those days. Illinois has a positive “fairly
linear” trend. Florida has a nonlinear trend where cases are increasing until around August
15th, at which point cases start to decrease.

Exercise 2.14

ggplot(nba, aes(x = factor(win)) ) +
geom_bar() +
facet_wrap(~ player)

404



Kobe Bryant LeBron James Michael Jordan

0 1 0 1 0 1

0

300

600

900

factor(win)

co
un

t

A win is indicated with a “1”. All three players have more wins than losses. LeBron has the
most total wins and Jordan has the least total losses. But Jordan having less wins and losses
is relative because he also played the least number of games.

Exercise 2.15

ggplot(nba, aes(x = ft_percent, y = fg_percent)) +
geom_jitter(alpha=0.1)

Warning: Removed 490 rows containing missing values (`geom_point()`).

405



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ft_percent

fg
_p

er
ce

nt

The relationship between the field goal percentage and free throw percentage seems to have
no association. This means that whether a player made all of their free throws or only 50% of
their free throws, it will not impact their shooting during the game (field goal percent). If we
draw a circle around the points it is fairly horizontal (indicating no positive or negative trend)
and a large oval.

Exercise 2.16

ggplot(nba, aes(x = player, y = pts)) +
geom_boxplot() +
facet_wrap(~ season)

Warning: Removed 354 rows containing non-finite values (`stat_boxplot()`).

406



Playoff Regular

Kobe Bryant LeBron JamesMichael Jordan Kobe Bryant LeBron JamesMichael Jordan

0

20

40

60

80

player

pt
s

#Alternate way to visualize
ggplot(nba, aes(x = pts)) +
geom_histogram() +
facet_grid(player ~ season, scales = "free")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 354 rows containing non-finite values (`stat_bin()`).

407



Playoff Regular

K
obe B

ryant
LeB

ron Jam
es

M
ichael Jordan

0 20 40 60 0 20 40 60 80

0

50

100

150

0

50

100

150

200

0

50

100

pts

co
un

t

Exercise 2.17

ggplot(
covid_sub,
aes(x = date, y = new_confirmed, color = state_abbr)
) +
geom_line() +
theme_minimal() +
labs(x = NULL) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

408



0

20000

40000

Ju
l 0

1

Ju
l 1

5

Aug
 0

1

Aug
 1

5

Sep
 0

1

ne
w

_c
on

fir
m

ed

state_abbr

FL

IL

B.3 Chapter 3

Exercise 3.1 c. x %>% c() %>% b() %>% a()

Exercise 3.2 d. arrange() , g. filter() , c. mutate()

Exercise 3.3 a. 12 row and 5 columns

Exercise 3.4 b. To make exploring a data frame easier by only outputting the variables of
interest

Exercise 3.5 a. increase

Exercise 3.6 c. median and interquartile range; mean and standard deviation

Exercise 3.7 b. 𝑚𝑒𝑎𝑛 < 𝑚𝑒𝑑𝑖𝑎𝑛
Exercise 3.8 a. These key variables uniquely identify the observational units

Exercise 3.9 d.

Exercise 3.10 e.

Exercise 3.11 a. e. (there is no variable called passenger)

Exercise 3.12

409



nba %>%
group_by(player) %>%
summarize(avg_ft= mean(ft, na.rm=TRUE))

# A tibble: 3 x 2
player avg_ft
<chr> <dbl>

1 Kobe Bryant 6.19
2 LeBron James 5.92
3 Michael Jordan 7.03

Exercise 3.13

nba %>%
group_by(player) %>%
mutate(spread = pts_tm - pts_opp ) %>%
ungroup() %>%
slice_max(spread) %>%
select(player, pts_tm, pts_opp, spread)

# A tibble: 1 x 4
player pts_tm pts_opp spread
<chr> <dbl> <dbl> <dbl>

1 Kobe Bryant 112 57 55

# Alternate code
nba_spread <- nba %>%
group_by(player) %>%
mutate(spread = pts_tm - pts_opp ) %>%
select(player, pts_tm, pts_opp, spread)

nba_spread %>% arrange(desc(spread))

# A tibble: 4,747 x 4
# Groups: player [3]

player pts_tm pts_opp spread
<chr> <dbl> <dbl> <dbl>

1 Kobe Bryant 112 57 55
2 Michael Jordan 129 82 47
3 Kobe Bryant 113 67 46

410



4 Kobe Bryant 113 67 46
5 Michael Jordan 114 69 45
6 Michael Jordan 140 96 44
7 LeBron James 130 86 44
8 Michael Jordan 123 81 42
9 Michael Jordan 111 69 42
10 Michael Jordan 96 54 42
# i 4,737 more rows

Kobe Bryant had the largest win spread, winning the game by 55 points.

Exercise 3.14

titanic %>%
group_by(Pclass) %>%
summarize(fare_calc= sum(Fare, na.rm=TRUE)) %>%
arrange(desc(fare_calc))

# A tibble: 3 x 2
Pclass fare_calc
<dbl> <dbl>

1 1 10088.
2 3 2704.
3 2 2065.

Exercise 3.15

covid_join <- covid_states %>%
group_by(location_key, state) %>%
summarize(total_new_confirmed=sum(new_confirmed, na.rm=TRUE),

total_new_deceased=sum(new_deceased, na.rm=TRUE),
total_new_recovered=sum(new_recovered, na.rm=TRUE),
total_new_tested=sum(new_tested, na.rm=TRUE))

`summarise()` has grouped output by 'location_key'. You can override using the
`.groups` argument.

covid_joined <- covid_join %>%
inner_join(covid_dem, by= "location_key")

covid_joined

411



# A tibble: 59 x 18
# Groups: location_key [59]

location_key state total_new_confirmed total_new_deceased total_new_recovered
<chr> <chr> <dbl> <dbl> <dbl>

1 US_AK Alas~ 280233 1316 7136
2 US_AL Alab~ 1470163 20047 287739
3 US_AR Arka~ 923512 11861 315506
4 US_AS Amer~ 8038 33 0
5 US_AZ Ariz~ 2237208 30982 0
6 US_CA Cali~ 10215676 93827 0
7 US_CA_SFO Cali~ 220840 0 0
8 US_CO Colo~ 1627583 13235 0
9 US_CT Conn~ 869372 11180 5454

10 US_DC Dist~ 136577 1377 34968
# i 49 more rows
# i 13 more variables: total_new_tested <dbl>, population <dbl>,
# population_male <dbl>, population_female <dbl>, population_age_00_09 <dbl>,
# population_age_10_19 <dbl>, population_age_20_29 <dbl>,
# population_age_30_39 <dbl>, population_age_40_49 <dbl>,
# population_age_50_59 <dbl>, population_age_60_69 <dbl>,
# population_age_70_79 <dbl>, population_age_80_and_older <dbl>

Exercise 3.16

covid_pop <- covid_states %>%
filter(state_abbr %in% c("CA", "TX", "FL", "NY"))

Exercise 3.17

library(lubridate)
covid_confirmed <- covid_pop %>%
filter(date<="2021-12-31", date>="2021-01-01") %>%
mutate(week = week(date)) %>%
group_by(week, state) %>%
summarize(total_confirmed = sum(new_confirmed))

`summarise()` has grouped output by 'week'. You can override using the
`.groups` argument.

412



ggplot(data=covid_confirmed,
aes(x=week, y=total_confirmed, color=state)) +

geom_line()

0e+00

2e+05

4e+05

6e+05

0 20 40
week

to
ta

l_
co

nf
ir

m
ed

state

California

Florida

New York

Texas

The linegraph shows that the states had the similar pattern overall. The peaks seem to
correspond to weeks of holidays and school starting where people are gathering.

B.4 Chapter 4

Under Construction

Currently working on exercise solutions.

B.5 Chapter 5

Exercise 5.1 c) -0.7

Exercise 5.2 e) Exactly 1

Exercise 5.3 b) Between -1 and 0

413



Exercise 5.4 a) explanatory variable & b) predictor variable & d) independent variable f)
covariate

Exercise 5.5 c) outcome variable & e) dependent variable

Exercise 5.6 c) 𝑏0 & e) the value of ̂𝑦 when 𝑥 = 0 & f) intercept

Exercise 5.7 d) For every increase of 1 unit in x, there is an associated increase of, on average,
3.86 units of y.

Exercise 5.8 a) TRUE

Exercise 5.9 b) FALSE

Exercise 5.10 a) TRUE

Exercise 5.11 d) No, the positive correlation does not necessarily imply causation.

Exercise 5.12

a)

skim(covid_states)

b)

covid_states %>%
select(new_tested, new_confirmed) %>%
cor(use = "complete.obs")

new_tested new_confirmed
new_tested 1.0000000 0.5143968
new_confirmed 0.5143968 1.0000000

The correlation is 0.514.

c)

ggplot(covid_states, aes(x = new_tested, y = new_confirmed)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 32479 rows containing non-finite values (`stat_smooth()`).

414



Warning: Removed 32479 rows containing missing values (`geom_point()`).

0e+00

1e+05

2e+05

3e+05

0 250000 500000 750000
new_tested

ne
w

_c
on

fir
m

ed

d)

model_covid <- lm(new_confirmed ~ new_tested, data = covid_states)

summary(model_covid)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 320.15752670 3.623722e+01 8.835047 1.070594e-18
new_tested 0.05688714 6.248052e-04 91.047802 0.000000e+00

̂𝑛𝑒𝑤𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑 = 320.16 + 0.057 ∗ 𝑛𝑒𝑤𝑡𝑒𝑠𝑡𝑒𝑑
e)

Intercept: When there are 0 people newly tested for COVID, we expect there to 320.16 newly
confirmed cases.

Slope:: For every 1 additional person newly tested for COVID, we expect the number of new
confirmed cases to increase by 0.057.

f)

415



320.16 + 0.057*20000

[1] 1460.16

We would expect 1,460 people to have COVID.

Exercise 5.13

model_pts <- lm(pts_tm ~ pts, data = nba)

summary(model_pts)

Call:
lm(formula = pts_tm ~ pts, data = nba)

Residuals:
Min 1Q Median 3Q Max

-41.117 -8.288 -0.497 7.813 52.883

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.80431 0.53661 172.95 <2e-16 ***
pts 0.34493 0.01844 18.71 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.84 on 4391 degrees of freedom
(354 observations deleted due to missingness)

Multiple R-squared: 0.07382, Adjusted R-squared: 0.0736
F-statistic: 350 on 1 and 4391 DF, p-value: < 2.2e-16

a) 0.272

nba %>%
summarize(cor = cor(pts_tm, pts, use = "complete.obs"))

# A tibble: 1 x 1
cor

<dbl>
1 0.272

416



b)

ggplot(nba, aes(x = pts, y = pts_tm)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 354 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 354 rows containing missing values (`geom_point()`).

60

80

100

120

140

0 20 40 60 80
pts

pt
s_

tm

c)
𝑝𝑡𝑠𝑡𝑚 = 92.80 + 0.345 ∗ 𝑝𝑡𝑠

d)

Intercept: When the individual player scored 0 points in a game, we expect their team to
score 92.80 points.

Slope:: For every 1 additional point the individual player scores, we expect the number of
total points the team scores to increase by 0.345.

e) We predict the team will have a total of 110 points.

417



92.80 + 0.345*50

[1] 110.05

Exercise 5.14

model_fare <- lm(Fare ~ Embarked, data = titanic)

summary(model_fare)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.25976 5.245351 12.632094 3.631118e-31
EmbarkedQ -55.30206 9.408632 -5.877801 8.563720e-09
EmbarkedS -38.02933 6.160066 -6.173526 1.594559e-09

a)
𝐹𝑎𝑟𝑒 = 66.26 − 55.32 ∗ 1𝑄(𝑥) − 38.03 ∗ 1𝑆(𝑥)

b) The expected fare for passengers that embarked from Cherbourg (C) is 66.26.

c) On average, Cherbourg (C) had the highest ticket cost.

d)

titanic_error <- titanic %>%
filter(!is.na(Fare)) %>%
mutate(residuals = residuals(model_fare),

fitted = fitted.values(model_fare)) %>%
select(PassengerId, Survived, Fare,

Embarked, residuals, fitted)

titanic_error %>%
slice_max(residuals, n=1)

# A tibble: 1 x 6
PassengerId Survived Fare Embarked residuals fitted

<dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 1235 1 512. C 446. 66.3

418



titanic_error %>%
slice_min(residuals, n=1)

# A tibble: 2 x 6
PassengerId Survived Fare Embarked residuals fitted

<dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 1008 0 6.44 C -59.8 66.3
2 1025 0 6.44 C -59.8 66.3

The worst prediction will be the residual that is farthest from 0. We checked both the min (far-
thest negative) and max (farthest positive) residual. Passenger 1235 had the worst prediction
with an observed value of 512.33 and predicted value of 66.26 (residual of 446.07).

Exercise 5.15

# coefficients
summary(model_pts)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.8043115 0.53660781 172.94626 0.000000e+00
pts 0.3449292 0.01843843 18.70708 3.387935e-75

# or
model_pts$coefficients

(Intercept) pts
92.8043115 0.3449292

# r.squared
summary(model_pts)$r.squared

[1] 0.07381528

419



B.6 Chapter 6

Exercise 6.1 c. The parallel slopes model. Since two models are very similar, the additional
complexity of the interaction model isn’t necessary

Exercise 6.2 d. 0.47

Exercise 6.3 b. False

Exercise 6.4 a. True

Exercise 6.5 a. Splitting up your data can result in unequal balance in representation of some
groups compared to others. & d. Splitting up your data by a confounding variable can allow
you to see trends in the data that were hidden in the aggregated version of the data.

Exercise 6.6

covid_pred <- lm(new_confirmed ~ new_recovered + new_deceased, data = covid_states)

summary(covid_pred)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 518.74700904 18.288027150 28.36539 1.772179e-171
new_recovered 0.08351059 0.003615216 23.09975 1.353691e-115
new_deceased 26.48933330 0.380325510 69.64911 0.000000e+00

Exercise 6.7

covid_merge <- covid_states %>%
left_join(covid_dem)

covid_pred2 <- lm(new_confirmed ~ population + new_tested,
data = covid_merge)

summary(covid_pred2)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.704474e+02 4.211070e+01 4.047604 5.191359e-05
population 3.711377e-05 5.333525e-06 6.958581 3.529293e-12
new_tested 5.272425e-02 8.645625e-04 60.983732 0.000000e+00

Exercise 6.8

420



model_pts_parallel <- lm(pts_tm ~ pts + location,
data = nba)

summary(model_pts_parallel)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 90.9083513 0.55936120 162.52173 0.000000e+00
pts 0.3454997 0.01820944 18.97366 3.212988e-77
locationHome 3.7359444 0.35274866 10.59095 6.723724e-26

ggplot(nba, aes(x = pts, y = pts_tm, color = location)) +
geom_point() +
geom_parallel_slopes(se = FALSE)

Warning: Removed 354 rows containing non-finite values
(`stat_parallel_slopes()`).

Warning: Removed 354 rows containing missing values (`geom_point()`).

60

80

100

120

140

0 20 40 60 80
pts

pt
s_

tm

location

Away

Home

b_0 When the star player scores 0 points and the game is away, the team is predicted to score
90.9 points.

421



b_1 For every additional point the star player scores, the associated expected increase in
team points is 0.345, regardless if the game is home or away.

b_2 The team is expected to score on average 3.74 more points when the game is home
compared to when the game is away.

Exercise 6.9

model_pts_int <- lm(pts_tm ~ pts*location,
data = nba)

summary(model_pts_int)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 88.5705162 0.75138008 117.877115 0.000000e+00
pts 0.4305969 0.02579626 16.692224 1.072315e-60
locationHome 8.3693493 1.05745823 7.914591 3.117298e-15
pts:locationHome -0.1688308 0.03633496 -4.646510 3.474887e-06

ggplot(nba, aes(x = pts, y = pts_tm, color = location)) +
geom_point() +
geom_smooth(se = FALSE)

60

80

100

120

140

0 20 40 60 80
pts

pt
s_

tm

location

Away

Home

422



b_0 When the star player scores 0 points and the game is away, the team is predicted to score
88.57 points.

b_1 For every additional point the star player scores, the associated expected increase in
team points is 0.431 for away games.

b_2 When the star player scores 0 points, the team is expected to score on average 8.37 more
points when the game is home compared to when the game is away.

b_3 For every additional point the star player scores, the associated expected increase in
team points will be 0.169 less for home games than away games.

Exercise 6.10

# parallel slopes
mean(model_pts_parallel$residuals^2)

[1] 136.5566

# interaction
mean(model_pts_int$residuals^2)

[1] 135.8881

The MSE of the parallel slopes is 136.6 and the MSE of the interaction is 135.9. Since the
MSE for the interaction model is smaller it appears to be slightly better.

Exercise 6.11

Many different possible answers

model_better <- lm(pts_tm ~ pts_opp + pts, data = nba)

mean(model_better$residuals^2)

[1] 116.9488

This model which uses the opponents points and star player points has an MSE of 116.9 which
is better.

423



B.7 Chapter 7

Exercise 7.1 a) There is a non-zero probability of being selected into the treatment or control
group for every unit & c) A random process is used for selection & e) A random process is
used for administration of the treatments

Exercise 7.2 d) rbernoulli(n = 1000, p = 0.25)

Exercise 7.3 b) False

Exercise 7.4 a) True

Exercise 7.5 a) Try to ensure that treatment and control groups are as similar as possible on
all variables related to treatment assignment & c) Look for variables you can use to control
for confounding & d) State your assumptions and limitations

Exercise 7.6 b) private colleges are only correlated with higher GPAs, because this would be
an observational study

Exercise 7.7 b) video games are only correlated with violent behavior, because this would be
an observational study

Exercise 7.8 Perhaps class size is a confounding variable for gpa, smaller sizes could lead to
more individualized attention and higher grades. Perhaps parental control is a confounding
variable for video games, children that play violent video games probably have less parental
guidance or household rules leading to poor behavior choices.

Exercise 7.9 d) No, because the treatment and control groups were not randomized

Exercise 7.10 a confounding (or lurking) variable

Exercise 7.11 No the administration cannot conclude the after-school program caused student
improvement. While this was a randomized selection of a subset of students we cannot gener-
alize to all students because all students were not considered. Also, this was a before and after
study where it is likely the material from the fall semester is likely different from the material
in the spring semester. Perhaps these students were just better at the topics covered in the
spring.

Exercise 7.12 Geography might impact the results because maybe the west has more rural cities
than the east or perhaps there are different demographics of people that live in each region.
Certain types of people/demographics might favor the ‘traditional’ label and deter from the
new label because they don’t recognize it while other types of people will see the new label
and but it because it is ‘new’. A way to reduce the impact of geography is to use “matching”.
Find a list of cities in the east that match on average with the cities in the west (perhaps New
York City is very similar on average to Los Angeles etc.). Then randomly sample these pairs
of cities to compare sales results (to measure if it is receptive).

424



B.8 Chapter 8

Exercise 8.1 d) a population parameter

Exercise 8.2 b) ̂𝜇 & d) ̄𝑥 & f) ̂𝜋 & g) 𝑝 & h) ̂𝑝 & i) 𝑠 & k) �̂�
Exercise 8.3 all of them (a, b, c, d)

Exercise 8.4 b) Cluster sampling

Exercise 8.5 d) Systematic sampling

Exercise 8.6 c) Stratified sampling

Exercise 8.7 c) Cluster sampling (with unequal probability) choosing towns is based on random
cluster selection

Exercise 8.8 b) False

Exercise 8.9 c) An observational study with random sampling but no random assignment

Exercise 8.10 d) No, you cannot make causal or generalizable claims from the results of your
survey

Exercise 8.11 population: US citizens

parameter: proportion (most likely a Yes or No question)

undercoverage: citizens that do not own a house, if there are multiple citizens in one household
only one person will receive the survey.

Exercise 8.12

sampling method: stratified sampling

Compared to simple random sampling, stratified sample is guaranteed to represent people from
all 50 states.

While the stratified sampling would allow for better representation of people in different states,
the same limitations in regards to citizens without addresses or if multiple citizens live in one
household.

425



B.9 Chapter 9

Exercise 9.1 b) unimodal & h) symmetric

Exercise 9.2 b) False

?@exr-ch09-c03 c) 1 - pnorm(q = 60, mean = 64, sd = 3, lower.tail = FALSE)

?@exr-ch09-c04 b) pnorm(q = 72, mean = 64, sd = 3) - pnorm(q = 60, mean = 64,
sd = 3) c) 1 - pnorm(q = -1.33) - pnorm(q = 2.67, lower.tail = FALSE)

?@exr-ch09-c05 b) orange

Exercise 9.6 a) True

Exercise 9.7

d) The sampling distribution of the sample mean and the sampling distribution of the
difference in sample means both follow the T distribution

e) The regression slope and regression intercept both follow the T distribution

Exercise 9.8 a) True

Exercise 9.9 b) False

Exercise 9.10 d) unbiased and precise

Exercise 9.11

b) False

Exercise 9.12

• normal/t distribution
• normal/t distribution
• chi-squared distribution

?@exr-ch09-c13

a) 99.7% (3 standard deviations)

b)

pnorm(q = 13, mean = 10.5, sd = 1.5,
lower.tail = FALSE)

[1] 0.04779035

426



4.78% of men have a shoe size larger than 13.

c)

pnorm(q = 12, mean = 10.5, sd = 1.5) - pnorm(q = 10, mean = 10.5, sd = 1.5)

[1] 0.4719034

47.19% of males have a shoe size between 10 and 12. So assuming this is a random male where
everyone has an equal chance of selection there is a 47.19% chance.

d)

qnorm(p = 0.6, mean = 10.5, sd = 1.5, lower.tail = FALSE)

[1] 10.11998

His shoe size is 10.12 (which is not an actual shoe size so his shoe size would be 10)

?@exr-ch09-c14

We have a sample mean and sample standard deviation so will use the t-distribution

a)

stat = (6-6.02)/0.03
pt(q = stat, df = 17)

[1] 0.2569661

b)

qt(p = 0.1, df = 17, lower.tail = FALSE)

[1] 1.333379

# Solve for x in STAT = (x-mean)/s
1.333379*0.03+6.02

[1] 6.060001

c)

427



stat_5.95 = (5.95-6.02)/0.03
pt(q = stat_5.95, df = 17)

[1] 0.01608422

stat_6.05 = (6.05-6.02)/0.03
pt(q = stat_6.05, df = 17, lower.tail= FALSE)

[1] 0.1656664

#under 5.95 or over 6.05
0.01608422 + 0.1656664

[1] 0.1817506

?@exr-ch09-c15

weather <- tibble(
daily_weather = c(rep("sunny",476),

rep("cloudy",558),
rep("partly cloudy",487),
rep("rainy",312),
rep("thuderstorms",28),
rep("snowy",329))

)

set.seed(52)
samples_1 <- weather %>%
rep_sample_n(size = 30, reps = 50)

samples_2 <- weather %>%
rep_sample_n(size = 30, reps = 5000)

samples_3 <- weather %>%
rep_sample_n(size = 50, reps = 5000)

428



summary_1 <- samples_1 %>%
group_by(replicate) %>%
summarize(sunny = sum(daily_weather == "sunny"),

prop = sunny/n())

summary_2 <- samples_2 %>%
group_by(replicate) %>%
summarize(sunny = sum(daily_weather == "sunny"),

prop = sunny/n())

summary_3 <- samples_3 %>%
group_by(replicate) %>%
summarize(sunny = sum(daily_weather == "sunny"),

prop = sunny/n())

plot_1 <- ggplot(summary_1, aes(x = prop)) +
geom_histogram(color = "white", bins = 5)

plot_2 <- ggplot(summary_2, aes(x = prop)) +
geom_histogram(color = "white", bins = 17)

plot_3 <- ggplot(summary_3, aes(x = prop)) +
geom_histogram(color = "white", bins = 22)

plot_1 + plot_2 + plot_3

429



0

5

10

15

20

0.1 0.2 0.3
prop

co
un

t

0

250

500

750

0.0 0.2 0.4
prop

co
un

t

0

200

400

600

0.0 0.1 0.2 0.3 0.4
prop

co
un

t
B.10 Chapter 10

Exercise 10.1 Estimate
𝑝𝑚 Critical Value*SE(Estimate)

Exercise 10.2 a) We are 90% confident that the true mean is within any given 90% confidence
interval

d) Approximately 90% of confidence intervals contain the true mean

Exercise 10.3 b) False

Exercise 10.4 a)

Exercise 10.5 a) decrease

Exercise 10.6 c)

Exercise 10.7 d) qt(p = 0.05, df = 14)

Exercise 10.8 d) qnorm(p = 0.015)

Exercise 10.9 0.01804

Exercise 10.10

430



nba_mj <- nba_sample %>%
filter(player == "Michael Jordan")

t.test(nba_mj$pts, conf.level = 0.85)

One Sample t-test

data: nba_mj$pts
t = 33.421, df = 98, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
85 percent confidence interval:
30.30159 33.05194
sample estimates:
mean of x
31.67677

Exercise 10.11

Let’s consider only the games that Kobe Bryant played in.

nba_sample %>%
filter(!is.na(gs)) %>%
count(win, player)

# A tibble: 6 x 3
win player n

<dbl> <chr> <int>
1 0 Kobe Bryant 33
2 0 LeBron James 32
3 0 Michael Jordan 33
4 1 Kobe Bryant 56
5 1 LeBron James 59
6 1 Michael Jordan 66

prop.test(x = 56, n = (56 + 33), conf.level = 0.99, correct = FALSE)

1-sample proportions test without continuity correction

431



data: 56 out of (56 + 33), null probability 0.5
X-squared = 5.9438, df = 1, p-value = 0.01477
alternative hypothesis: true p is not equal to 0.5
99 percent confidence interval:
0.4927093 0.7477887
sample estimates:

p
0.6292135

We are 99% confident that the proportion of career wins for Kobe Bryant is between 0.493
and 0.748.

Exercise 10.12

nba_sample %>%
filter(!is.na(gs)) %>%
count(win, player)

# A tibble: 6 x 3
win player n

<dbl> <chr> <int>
1 0 Kobe Bryant 33
2 0 LeBron James 32
3 0 Michael Jordan 33
4 1 Kobe Bryant 56
5 1 LeBron James 59
6 1 Michael Jordan 66

prop.test(x = c(56, 59), n = c(56 + 33, 59+32), conf.level = 0.9, correct = FALSE)

2-sample test for equality of proportions without continuity correction

data: c(56, 59) out of c(56 + 33, 59 + 32)
X-squared = 0.071432, df = 1, p-value = 0.7893
alternative hypothesis: two.sided
90 percent confidence interval:
-0.13691240 0.09863607
sample estimates:

prop 1 prop 2
0.6292135 0.6483516

432



Exercise 10.13

nba_mj <- nba_sample %>%
filter(player == "Michael Jordan")

nba_kobe <- nba_sample %>%
filter(player == "Kobe Bryant")

t.test(x = nba_mj$ft_percent, y = nba_kobe$ft_percent, conf.level = 0.95)

Welch Two Sample t-test

data: nba_mj$ft_percent and nba_kobe$ft_percent
t = 1.2643, df = 172.42, p-value = 0.2078
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.01552775 0.07086917
sample estimates:
mean of x mean of y
0.8460825 0.8184118

We are 95% confident that the difference in free throw percentage between Michael Jordan
and Kobe Bryant is between -0.0155 and 0.071.

Exercise 10.15

# 2
nba %>%
filter(!is.na(gs), player == "Kobe Bryant") %>%
count(win)

# A tibble: 2 x 2
win n

<dbl> <int>
1 0 595
2 1 971

971/(971+595)

[1] 0.6200511

433



Yes, 0.620 is between our 99% CI [0.493, 0.748]

# 4
nba %>%
group_by(player) %>%
summarize(mean = mean(ft_percent, na.rm = TRUE))

# A tibble: 3 x 2
player mean
<chr> <dbl>

1 Kobe Bryant 0.829
2 LeBron James 0.727
3 Michael Jordan 0.828

0.8279-0.8286

[1] -7e-04

Yes, -0.0007 is between our 95% CI [-0.0155, 0.071]

B.11 Chapter 11

Under Construction

Currently working on exercise solutions.

B.12 Chapter 12

Exercise 12.1 a) Type I Error

Exercise 12.2 d) No, one type of error will be minimized at the expense of the other type

Exercise 12.3 b) False

Exercise 12.4 a) True

Exercise 12.5 a) 𝛼 b) 𝑛
Exercise 12.6 b) Type II Error

Exercise 12.7

434



d) Reject the null, there is a difference between the proportions.

Exercise 12.8

b) becomes smaller

Exercise 12.9

c)

Exercise 12.10

𝐻0 ∶
the person does not have HIV

𝐻𝐴 ∶
the person has HIV

Scenario 1: The person tests positive for HIV and has HIV Scenario 2: The person tests
positive for HIV but does not actually have HIV (Type I error) Scenario 3: The person tests
negative for HIV but actually has HIV (Type II error) Scenario 4: The person tests negative
for HIV and does not have HIV

Exercise 12.11

𝐻0 ∶ 𝜇𝑡𝑒𝑎𝑚𝑝𝑡𝑠 = 100

𝐻𝐴 ∶ 𝜇𝑡𝑒𝑎𝑚𝑝𝑡𝑠 ≠ 100

t.test(nba$pts_tm, mu = 100)

One Sample t-test

data: nba$pts_tm
t = 11.521, df = 4746, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
101.7088 102.4096
sample estimates:
mean of x
102.0592

435



Exercise 12.12

𝐻0 ∶ 𝜇𝑗𝑜𝑟𝑑𝑎𝑛 − 𝜇𝑙𝑒𝑏𝑟𝑜𝑛 = 0

𝐻𝐴 ∶ 𝜇𝑗𝑜𝑟𝑑𝑎𝑛 − 𝜇𝑙𝑒𝑏𝑟𝑜𝑛 ≠ 0

First we need to pre-specify an alpha level. Let’s choose 0.05.

mj <- nba %>%
filter(player == "Michael Jordan")

lebron <- nba %>%
filter(player == "LeBron James")

t.test(x = mj$pts, y = lebron$pts)

Welch Two Sample t-test

data: mj$pts and lebron$pts
t = 9.8053, df = 2382.2, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.652615 3.978838
sample estimates:
mean of x mean of y
30.59872 27.28299

Exercise 12.13

𝐻0 ∶ 𝜋𝑤𝑖𝑛 = 0.5

𝐻𝐴 ∶ 𝜋𝑤𝑖𝑛 ≠ 0.5

nba %>%
filter(player == "Kobe Bryant") %>%
count(win)

436



# A tibble: 2 x 2
win n

<dbl> <int>
1 0 720
2 1 1057

prop.test(x = 1057, n = c(720+1057), p = 0.5, correct = FALSE)

1-sample proportions test without continuity correction

data: 1057 out of c(720 + 1057), null probability 0.5
X-squared = 63.911, df = 1, p-value = 1.302e-15
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.5718164 0.6174200
sample estimates:

p
0.5948227

Exercise 12.14

𝐻0 ∶ 𝜋𝑓𝑖𝑟𝑠𝑡 − 𝜋𝑡ℎ𝑖𝑟𝑑 = 0

𝐻𝐴 ∶ 𝜋𝑓𝑖𝑟𝑠𝑡 − 𝜋𝑡ℎ𝑖𝑟𝑑 ≠ 0

First we need to pre-specify an alpha rate. For example let’s pick 0.01.

titanic %>%
count(Survived, Pclass)

# A tibble: 6 x 3
Survived Pclass n

<dbl> <dbl> <int>
1 0 1 57
2 0 2 63
3 0 3 146
4 1 1 50
5 1 2 30
6 1 3 72

437



prop.test(x = c(50, 72), n = c(50+57, 72+146))

2-sample test for equality of proportions with continuity correction

data: c(50, 72) out of c(50 + 57, 72 + 146)
X-squared = 5.177, df = 1, p-value = 0.02289
alternative hypothesis: two.sided
95 percent confidence interval:
0.01675772 0.25727126
sample estimates:

prop 1 prop 2
0.4672897 0.3302752

438



C Learning check solutions

C.1 Chapter 1 Solutions

library(dplyr)
library(ggplot2)

(LC 1.1) Repeat the above installing steps, but for the dplyr, nycflights13, and knitr
packages. This will install the earlier mentioned dplyr package, the nycflights13 package
containing data on all domestic flights leaving a NYC airport in 2013, and the knitr package
for writing reports in R.

(LC 1.2) “Load” the dplyr, nycflights13, and knitr packages as well by repeating the
above steps.

Solution: If the following code runs with no errors, you’ve succeeded!

library(dplyr)
library(nycflights13)
library(knitr)

(LC 1.3) What does any ONE row in this flights dataset refer to?

• A. Data on an airline
• B. Data on a flight
• C. Data on an airport
• D. Data on multiple flights

Solution: This is data on a flight. Not a flight path! Example:

• a flight path would be United 1545 to Houston
• a flight would be United 1545 to Houston at a specific date/time. For example: 2013/1/1

at 5:15am.

(LC 1.4) What are some examples in this dataset of categorical variables? What makes
them different than quantitative variables?

Solution: Hint: Type ?flights in the console to see what all the variables mean!

439



• Categorical:

– carrier the company
– dest the destination
– flight the flight number. Even though this is a number, its simply a label. Exam-

ple United 1545 is not less than United 1714

• Quantitative:

– distance the distance in miles
– time_hour time

C.2 Chapter 2 Solutions

library(nycflights13)
library(ggplot2)
library(dplyr)
library(knitr)
library(moderndive)

(LC 2.1) Take a look at both the flights and alaska_flights data frames by running
View(flights) and View(alaska_flights) in the console. In what respect do these data
frames differ?

Solution: flights contains all flight data, while alaska_flights contains only data from
Alaskan carrier “AS”. We can see that flights has 336776 rows while alaska_flights has only
714

(LC 2.2) What are some practical reasons why dep_delay and arr_delay have a positive
relationship?

Solution: The later a plane departs, typically the later it will arrive.

(LC 2.3) What variables (not necessarily in the flights data frame) would you expect to
have a negative correlation (i.e. a negative relationship) with dep_delay? Why? Remember
that we are focusing on numerical variables here.

Solution: An example in the weather dataset is visibility, which measure visibility in
miles. As visibility increases, we would expect departure delays to decrease.

(LC 2.4) Why do you believe there is a cluster of points near (0, 0)? What does (0, 0)
correspond to in terms of the Alaskan flights?

440



Solution: The point (0,0) means no delay in departure nor arrival. From the point of view
of Alaska airlines, this means the flight was on time. It seems most flights are at least close
to being on time.

(LC 2.5) What are some other features of the plot that stand out to you?

Solution: Different people will answer this one differently. One answer is most flights depart
and arrive less than an hour late.

(LC 2.6) Create a new scatterplot using different variables in the alaska_flights data frame
by modifying the example above.

Solution: Many possibilities for this one, see the plot below. Is there a pattern in departure
delay depending on when the flight is scheduled to depart? Interestingly, there seems to be
only two blocks of time where flights depart.

ggplot(data = alaska_flights, mapping = aes(x = dep_time, y = dep_delay)) +
geom_point()

Warning: Removed 2 rows containing missing values (`geom_point()`).

0

50

100

150

200

1000 1500 2000
dep_time

de
p_

de
la

y

(LC 2.7) Why is setting the alpha argument value useful with scatterplots? What further
information does it give you that a regular scatterplot cannot?

441



Solution: It thins out the points so we address overplotting. But more importantly it hints at
the (statistical) density and distribution of the points: where are the points concentrated,
where do they occur. We will see more about densities and distributions in Chapter 6 when
we switch gears to statistical topics.

(LC 2.8) After viewing the Figure 2.4 above, give an approximate range of arrival delays and
departure delays that occur the most frequently. How has that region changed compared to
when you observed the same plot without the alpha = 0.2 set in Figure 2.2?

Solution: The lower plot suggests that most Alaska flights from NYC depart between 12
minutes early and on time and arrive between 50 minutes early and on time.

(LC 2.9) Take a look at both the weather and early_january_weather data frames by
running View(weather) and View(early_january_weather) in the console. In what respect
do these data frames differ?

Solution: The rows of early_january_weather are a subset of weather.

(LC 2.10) View() the flights data frame again. Why does the time_hour variable uniquely
identify the hour of the measurement whereas the hour variable does not?

Solution: Because to uniquely identify an hour, we need the year/month/day/hour sequence,
whereas there are only 24 possible hour’s.

(LC 2.11) Why should linegraphs be avoided when there is not a clear ordering of the hori-
zontal axis?

Solution: Because lines suggest connectedness and ordering.

(LC 2.12) Why are linegraphs frequently used when time is the explanatory variable?

Solution: Because time is sequential: subsequent observations are closely related to each
other.

(LC 2.13) Plot a time series of a variable other than temp for Newark Airport in the first 15
days of January 2013.

Solution: Humidity is a good one to look at, since this very closely related to the cycles of a
day.

ggplot(data = early_january_weather, mapping = aes(x = time_hour, y = humid)) +
geom_line()

442



40

60

80

100

Jan 07 Jan 14
time_hour

hu
m

id

(LC 2.14) What does changing the number of bins from 30 to 40 tell us about the distribution
of temperatures?

Solution: The distribution doesn’t change much. But by refining the bin width, we see that
the temperature data has a high degree of accuracy. What do I mean by accuracy? Looking at
the temp variabile by View(weather), we see that the precision of each temperature recording
is 2 decimal places.

(LC 2.15) Would you classify the distribution of temperatures as symmetric or skewed?

Solution: It is rather symmetric, i.e. there are no long tails on only one side of the distribu-
tion

(LC 2.16) What would you guess is the “center” value in this distribution? Why did you
make that choice?

Solution: The center is around 55.2603921°F. By running the summary() command, we see
that the mean and median are very similar. In fact, when the distribution is symmetric the
mean equals the median.

(LC 2.17) Is this data spread out greatly from the center or is it close? Why?

Solution: This can only be answered relatively speaking! Let’s pick things to be relative to
Seattle, WA temperatures:

443



While, it appears that Seattle weather has a similar center of 55°F, its temperatures are almost
entirely between 35°F and 75°F for a range of about 40°F. Seattle temperatures are much less
spread out than New York i.e. much more consistent over the year. New York on the other
hand has much colder days in the winter and much hotter days in the summer. Expressed
differently, the middle 50% of values, as delineated by the interquartile range is 30°F:

(LC 2.18) What other things do you notice about the faceted plot above? How does a faceted
plot help us see relationships between two variables?

Solution:

• Certain months have much more consistent weather (August in particular), while others
have crazy variability like January and October, representing changes in the seasons.

• Because we see temp recordings split by month, we are considering the relationship be-
tween these two variables. For example, for example for summer months, temperatures
tend to be higher.

(LC 2.19) What do the numbers 1-12 correspond to in the plot above? What about 25, 50,
75, 100?

Solution:

444



• While month is technically a number between 1-12, we’re viewing it as a categorical
variable here. Specifically an ordinal categorical variable since there is a ordering to
the categories

• 25, 50, 75, 100 are temperatures

(LC 2.20) For which types of data-sets would these types of faceted plots not work well in
comparing relationships between variables? Give an example describing the nature of these
variables and other important characteristics.

Solution:

• We’d have 365 facets to look at. Way too many.
• We don’t really care about day-to-day fluctuation in weather so much, but maybe more

week-to-week variation. We’d like to focus on seasonal trends.

(LC 2.21) Does the temp variable in the weather data-set have a lot of variability? Why do
you say that?

Solution: Again, like in LC (LC 2.17), this is a relative question. I would say yes, because in
New York City, you have 4 clear seasons with different weather. Whereas in Seattle WA and
Portland OR, you have two seasons: summer and rain!

(LC 2.22) What does the dot at the bottom of the plot for May correspond to? Explain what
might have occurred in May to produce this point.

Solution: It appears to be an outlier. Let’s revisit the use of the filter command to hone
in on it. We want all data points where the month is 5 and temp<25

weather %>%
filter(month==5 & temp < 25)

# A tibble: 1 x 15
origin year month day hour temp dewp humid wind_dir wind_speed wind_gust
<chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 JFK 2013 5 8 22 13.1 12.0 95.3 80 8.06 NA
# i 4 more variables: precip <dbl>, pressure <dbl>, visib <dbl>,
# time_hour <dttm>

There appears to be only one hour and only at JFK that recorded 13.1 F (-10.5 C) in the
month of May. This is probably a data entry mistake! Why wasn’t the weather at least similar
at EWR (Newark) and LGA (La Guardia)?

(LC 2.23) Which months have the highest variability in temperature? What reasons do you
think this is?

445



Solution: We are now interested in the spread of the data. One measure some of you may
have seen previously is the standard deviation. But in this plot we can read off the Interquartile
Range (IQR):

• The distance from the 1st to the 3rd quartiles i.e. the length of the boxes
• You can also think of this as the spread of the middle 50% of the data

Just from eyeballing it, it seems

• November has the biggest IQR, i.e. the widest box, so has the most variation in temper-
ature

• August has the smallest IQR, i.e. the narrowest box, so is the most consistent
temperature-wise

Here’s how we compute the exact IQR values for each month (we’ll see this more in depth
Chapter 5 of the text):

1. group the observations by month then
2. for each group, i.e. month, summarize it by applying the summary statistic function

IQR(), while making sure to skip over missing data via na.rm=TRUE then
3. arrange the table in descending order of IQR

weather %>%
group_by(month) %>%
summarize(IQR = IQR(temp, na.rm=TRUE)) %>%
arrange(desc(IQR))

month IQR
11 16.02
12 14.04
1 13.77
9 12.06
4 12.06
5 11.88
6 10.98

10 10.98
2 10.08
7 9.18
3 9.00
8 7.02

(LC 2.24) We looked at the distribution of the numerical variable temp split by the numerical
variable month that we converted to a categorical variable using the factor() function. Why

446



would a boxplot of temp split by the numerical variable pressure similarly converted to a
categorical variable using the factor() not be informative?

Solution: Because there are 12 unique values of month yielding only 12 boxes in our boxplot.
There are many more unique values of pressure (469 unique values in fact), because values
are to the first decimal place. This would lead to 469 boxes, which is too many for people to
digest.

(LC 2.25) Boxplots provide a simple way to identify outliers. Why may outliers be easier to
identify when looking at a boxplot instead of a faceted histogram?

Solution: In a histogram, the bin corresponding to where an outlier lies may not by high
enough for us to see. In a boxplot, they are explicitly labelled separately.

(LC 2.26) Why are histograms inappropriate for visualizing categorical variables?

Solution: Histograms are for numerical variables i.e. the horizontal part of each histogram
bar represents an interval, whereas for a categorical variable each bar represents only one level
of the categorical variable.

(LC 2.27) What is the difference between histograms and barplots?

Solution: See above.

(LC 2.28) How many Envoy Air flights departed NYC in 2013?

Solution: Envoy Air is carrier code MQ and thus 26397 flights departed NYC in 2013.

(LC 2.29) What was the seventh highest airline in terms of departed flights from NYC in
2013? How could we better present the table to get this answer quickly?

Solution: What a pain! We’ll see in Chapter 5 on Data Wrangling that applying
arrange(desc(n)) will sort this table in descending order of n!

(LC 2.30) Why should pie charts be avoided and replaced by barplots?

Solution: In our opinion, comparisons using horizontal lines are easier than comparing angles
and areas of circles.

(LC 2.31) What is your opinion as to why pie charts continue to be used?

Solution: Legacy?

(LC 2.32) What kinds of questions are not easily answered by looking at the above figure?

Solution: Because the red, green, and blue bars don’t all start at 0 (only red does), it makes
comparing counts hard.

(LC 2.33) What can you say, if anything, about the relationship between airline and airport
in NYC in 2013 in regards to the number of departing flights?

447



Solution: The different airlines prefer different airports. For example, United is mostly a
Newark carrier and JetBlue is a JFK carrier. If airlines didn’t prefer airports, each color
would be roughly one third of each bar.}

(LC 2.34) Why might the side-by-side (AKA dodged) barplot be preferable to a stacked
barplot in this case?

Solution: We can easily compare the different aiports for a given carrier using a single com-
parison line i.e. things are lined up

(LC 2.35) What are the disadvantages of using a side-by-side (AKA dodged) barplot, in
general?

Solution: It is hard to get totals for each airline.

(LC 2.36) Why is the faceted barplot preferred to the side-by-side and stacked barplots in
this case?

Solution: Not that different than using side-by-side; depends on how you want to organize
your presentation.

(LC 2.37) What information about the different carriers at different airports is more easily
seen in the faceted barplot?

Solution: Now we can also compare the different carriers within a particular airport easily
too. For example, we can read off who the top carrier for each airport is easily using a single
horizontal line.

C.3 Chapter 3 Solutions

library(dplyr)
library(ggplot2)
library(nycflights13)
library(kableExtra)

(LC 3.1) What’s another way using the “not” operator ! to filter only the rows that are not
going to Burlington, VT nor Seattle, WA in the flights data frame? Test this out using the
code above.

Solution:

448



# Original in book
not_BTV_SEA <- flights %>%
filter(!(dest == "BTV" | dest == "SEA"))

# Alternative way
not_BTV_SEA <- flights %>%
filter(!dest == "BTV" & !dest == "SEA")

# Yet another way
not_BTV_SEA <- flights %>%
filter(dest != "BTV" & dest != "SEA")

(LC 3.2) Say a doctor is studying the effect of smoking on lung cancer for a large number of
patients who have records measured at five year intervals. She notices that a large number of
patients have missing data points because the patient has died, so she chooses to ignore these
patients in her analysis. What is wrong with this doctor’s approach?

Solution: The missing patients may have died of lung cancer! So to ignore them might
seriously bias your results! It is very important to think of what the consequences on your
analysis are of ignoring missing data! Ask yourself:

• There is a systematic reasons why certain values are missing? If so, you might be biasing
your results!

• If there isn’t, then it might be ok to “sweep missing values under the rug.”

(LC 3.3) Modify the above summarize function to create summary_temp to also use the n()
summary function: summarize(count = n()). What does the returned value correspond
to?

Solution: It corresponds to a count of the number of observations/rows:

weather %>%
summarize(count = n())

# A tibble: 1 x 1
count
<int>

1 26115

(LC 3.4) Why doesn’t the following code work? Run the code line by line instead of all
at once, and then look at the data. In other words, run summary_temp <- weather %>%
summarize(mean = mean(temp, na.rm = TRUE)) first.

449



summary_temp <- weather %>%
summarize(mean = mean(temp, na.rm = TRUE)) %>%
summarize(std_dev = sd(temp, na.rm = TRUE))

Solution: Consider the output of only running the first two lines:

weather %>%
summarize(mean = mean(temp, na.rm = TRUE))

# A tibble: 1 x 1
mean
<dbl>

1 55.3

Because after the first summarize(), the variable temp disappears as it has been collapsed to
the value mean. So when we try to run the second summarize(), it can’t find the variable
temp to compute the standard deviation of.

(LC 3.5) Recall from Chapter -Chapter 2 when we looked at plots of temperatures by months
in NYC. What does the standard deviation column in the summary_monthly_temp data frame
tell us about temperatures in New York City throughout the year?

Solution:

month mean std_dev
1 35.63566 10.224635
2 34.27060 6.982378
3 39.88007 6.249278
4 51.74564 8.786168
5 61.79500 9.681644
6 72.18400 7.546371
7 80.06622 7.119898
8 74.46847 5.191615
9 67.37129 8.465902
10 60.07113 8.846035
11 44.99043 10.443805
12 38.44180 9.982432

The standard deviation is a quantification of spread and variability. We see that the period
in November, December, and January has the most variation in weather, so you can expect
very different temperatures on different days.

450



(LC 3.6) What code would be required to get the mean and standard deviation temperature
for each day in 2013 for NYC?

Solution:

summary_temp_by_day <- weather %>%
group_by(year, month, day) %>%
summarize(

mean = mean(temp, na.rm = TRUE),
std_dev = sd(temp, na.rm = TRUE)
)

`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.

summary_temp_by_day

# A tibble: 364 x 5
# Groups: year, month [12]

year month day mean std_dev
<int> <int> <int> <dbl> <dbl>

1 2013 1 1 37.0 4.00
2 2013 1 2 28.7 3.45
3 2013 1 3 30.0 2.58
4 2013 1 4 34.9 2.45
5 2013 1 5 37.2 4.01
6 2013 1 6 40.1 4.40
7 2013 1 7 40.6 3.68
8 2013 1 8 40.1 5.77
9 2013 1 9 43.2 5.40
10 2013 1 10 43.8 2.95
# i 354 more rows

Note: group_by(day) is not enough, because day is a value between 1-31. We need to
group_by(year, month, day)

library(dplyr)
library(nycflights13)

summary_temp_by_month <- weather %>%
group_by(month) %>%

451



summarize(
mean = mean(temp, na.rm = TRUE),
std_dev = sd(temp, na.rm = TRUE)
)

(LC 3.7) Recreate by_monthly_origin, but instead of grouping via group_by(origin,
month), group variables in a different order group_by(month, origin). What differs in the
resulting dataset?

Solution:

by_monthly_origin <- flights %>%
group_by(month, origin) %>%
summarize(count = n())

`summarise()` has grouped output by 'month'. You can override using the
`.groups` argument.

by_monthly_origin

452



month origin count
1 EWR 9893
1 JFK 9161
1 LGA 7950
2 EWR 9107
2 JFK 8421
2 LGA 7423
3 EWR 10420
3 JFK 9697
3 LGA 8717
4 EWR 10531
4 JFK 9218
4 LGA 8581
5 EWR 10592
5 JFK 9397
5 LGA 8807
6 EWR 10175
6 JFK 9472
6 LGA 8596
7 EWR 10475
7 JFK 10023
7 LGA 8927
8 EWR 10359
8 JFK 9983
8 LGA 8985
9 EWR 9550
9 JFK 8908
9 LGA 9116
10 EWR 10104
10 JFK 9143
10 LGA 9642
11 EWR 9707
11 JFK 8710
11 LGA 8851
12 EWR 9922
12 JFK 9146
12 LGA 9067

In by_monthly_origin the month column is now first and the rows are sorted by month instead
of origin. If you compare the values of count in by_origin_monthly and by_monthly_origin
using the View() function, you’ll see that the values are actually the same, just presented in
a different order.

(LC 3.8) How could we identify how many flights left each of the three airports for each
carrier?

453



Solution: We could summarize the count from each airport using the n() function, which
counts rows.

count_flights_by_airport <- flights %>%
group_by(origin, carrier) %>%
summarize(count=n())

`summarise()` has grouped output by 'origin'. You can override using the
`.groups` argument.

count_flights_by_airport

454



origin carrier count
EWR 9E 1268
EWR AA 3487
EWR AS 714
EWR B6 6557
EWR DL 4342
EWR EV 43939
EWR MQ 2276
EWR OO 6
EWR UA 46087
EWR US 4405
EWR VX 1566
EWR WN 6188
JFK 9E 14651
JFK AA 13783
JFK B6 42076
JFK DL 20701
JFK EV 1408
JFK HA 342
JFK MQ 7193
JFK UA 4534
JFK US 2995
JFK VX 3596
LGA 9E 2541
LGA AA 15459
LGA B6 6002
LGA DL 23067
LGA EV 8826
LGA F9 685
LGA FL 3260
LGA MQ 16928
LGA OO 26
LGA UA 8044
LGA US 13136
LGA WN 6087
LGA YV 601

All remarkably similar! Note: the n() function counts rows, whereas the sum(VARIABLE_NAME)
funciton sums all values of a certain numerical variable VARIABLE_NAME.

(LC 3.9) How does the filter operation differ from a group_by followed by a summarize?

Solution:

• filter picks out rows from the original dataset without modifying them, whereas
• group_by %>% summarize computes summaries of numerical variables, and hence re-

ports new values.

455



(LC 3.10) What do positive values of the gain variable in flights correspond to? What
about negative values? And what about a zero value?

Solution:

• Say a flight departed 20 minutes late, i.e. dep_delay = 20
• Then arrived 10 minutes late, i.e. arr_delay = 10.
• Then gain = dep_delay - arr_delay = 20 - 10 = 10 is positive, so it “made

up/gained time in the air.”
• 0 means the departure and arrival time were the same, so no time was made up in the

air. We see in most cases that the gain is near 0 minutes.
• I never understood this. If the pilot says “we’re going make up time in the air” because

of delay by flying faster, why don’t you always just fly faster to begin with?

(LC 3.11) Could we create the dep_delay and arr_delay columns by simply subtracting
dep_time from sched_dep_time and similarly for arrivals? Try the code out and explain any
differences between the result and what actually appears in flights.

Solution: No because you can’t do direct arithmetic on times. The difference in time between
12:03 and 11:59 is 4 minutes, but 1203-1159 = 44

(LC 3.12) What can we say about the distribution of gain? Describe it in a few sentences
using the plot and the gain_summary data frame values.

Solution: Most of the time the gain is a little under zero, most of the time the gain is between
-50 and 50 minutes. There are some extreme cases however!

(LC 3.13) Looking at ?@fig-reldiagram, when joining flights and weather (or, in other
words, matching the hourly weather values with each flight), why do we need to join by all of
year, month, day, hour, and origin, and not just hour?

Solution: Because hour is simply a value between 0 and 23; to identify a specific hour, we
need to know which year, month, day and at which airport.

(LC 3.14) What surprises you about the top 10 destinations from NYC in 2013?

Solution: This question is subjective! What surprises me is the high number of flights to
Boston. Wouldn’t it be easier and quicker to take the train?

(LC 3.15) What are some advantages of data in normal forms? What are some disadvan-
tages?

Solution: When datasets are in normal form, we can easily _join them with other datasets!
For example, we can join the flights data with the planes data.

(LC 3.16) What are some ways to select all three of the dest, air_time, and distance
variables from flights? Give the code showing how to do this in at least three different
ways.

456



Solution:

# The regular way:
flights %>%
select(dest, air_time, distance)

# A tibble: 336,776 x 3
dest air_time distance
<chr> <dbl> <dbl>

1 IAH 227 1400
2 IAH 227 1416
3 MIA 160 1089
4 BQN 183 1576
5 ATL 116 762
6 ORD 150 719
7 FLL 158 1065
8 IAD 53 229
9 MCO 140 944
10 ORD 138 733
# i 336,766 more rows

# Since they are sequential columns in the dataset
flights %>%
select(dest:distance)

# A tibble: 336,776 x 3
dest air_time distance
<chr> <dbl> <dbl>

1 IAH 227 1400
2 IAH 227 1416
3 MIA 160 1089
4 BQN 183 1576
5 ATL 116 762
6 ORD 150 719
7 FLL 158 1065
8 IAD 53 229
9 MCO 140 944
10 ORD 138 733
# i 336,766 more rows

457



# Not as effective, by removing everything else
flights %>%
select(-year, -month, -day, -dep_time, -sched_dep_time, -dep_delay, -arr_time,

-sched_arr_time, -arr_delay, -carrier, -flight, -tailnum, -origin,
-hour, -minute, -time_hour)

# A tibble: 336,776 x 3
dest air_time distance
<chr> <dbl> <dbl>

1 IAH 227 1400
2 IAH 227 1416
3 MIA 160 1089
4 BQN 183 1576
5 ATL 116 762
6 ORD 150 719
7 FLL 158 1065
8 IAD 53 229
9 MCO 140 944
10 ORD 138 733
# i 336,766 more rows

(LC 3.17) How could one use starts_with, ends_with, and contains to select columns from
the flights data frame? Provide three different examples in total: one for starts_with, one
for ends_with, and one for contains.

Solution:

# Anything that starts with "d"
flights %>%
select(starts_with("d"))

# A tibble: 336,776 x 5
day dep_time dep_delay dest distance

<int> <int> <dbl> <chr> <dbl>
1 1 517 2 IAH 1400
2 1 533 4 IAH 1416
3 1 542 2 MIA 1089
4 1 544 -1 BQN 1576
5 1 554 -6 ATL 762
6 1 554 -4 ORD 719
7 1 555 -5 FLL 1065

458



8 1 557 -3 IAD 229
9 1 557 -3 MCO 944
10 1 558 -2 ORD 733
# i 336,766 more rows

# Anything related to delays:
flights %>%
select(ends_with("delay"))

# A tibble: 336,776 x 2
dep_delay arr_delay

<dbl> <dbl>
1 2 11
2 4 20
3 2 33
4 -1 -18
5 -6 -25
6 -4 12
7 -5 19
8 -3 -14
9 -3 -8

10 -2 8
# i 336,766 more rows

# Anything related to departures:
flights %>%
select(contains("dep"))

# A tibble: 336,776 x 3
dep_time sched_dep_time dep_delay

<int> <int> <dbl>
1 517 515 2
2 533 529 4
3 542 540 2
4 544 545 -1
5 554 600 -6
6 554 558 -4
7 555 600 -5
8 557 600 -3
9 557 600 -3
10 558 600 -2
# i 336,766 more rows

459



(LC 3.18) Why might we want to use the select() function on a data frame?

Solution: To narrow down the data frame, to make it easier to look at. Using View() for
example.

(LC 3.19) Create a new data frame that shows the top 5 airports with the largest arrival
delays from NYC in 2013.

Solution:

top_five <- flights %>%
group_by(dest) %>%
summarize(avg_delay = mean(arr_delay, na.rm = TRUE)) %>%
arrange(desc(avg_delay)) %>%
top_n(n = 5)

Selecting by avg_delay

top_five

# A tibble: 5 x 2
dest avg_delay
<chr> <dbl>

1 CAE 41.8
2 TUL 33.7
3 OKC 30.6
4 JAC 28.1
5 TYS 24.1

(LC 3.20) Using the datasets included in the nycflights13 package, compute the available
seat miles for each airline sorted in descending order. After completing all the necessary data
wrangling steps, the resulting data frame should have 16 rows (one for each airline) and 2
columns (airline name and available seat miles). Here are some hints:

1. Crucial: Unless you are very confident in what you are doing, it is worthwhile to not
starting coding right away, but rather first sketch out on paper all the necessary data
wrangling steps not using exact code, but rather high-level pseudocode that is informal
yet detailed enough to articulate what you are doing. This way you won’t confuse what
you are trying to do (the algorithm) with how you are going to do it (writing dplyr
code).

2. Take a close look at all the datasets using the View() function: flights, weather,
planes, airports, and airlines to identify which variables are necessary to compute
available seat miles.

460



3. Figure ?@fig-reldiagram above showing how the various datasets can be joined will
also be useful.

4. Consider the data wrangling verbs in Table (tab-wrangle-summary-table?) as your
toolbox!

Solution: Here are some examples of student-written pseudocode. Based on our own pseu-
docode, let’s first display the entire solution.

flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance) %>%
mutate(ASM = seats * distance) %>%
group_by(carrier) %>%
summarize(ASM = sum(ASM, na.rm = TRUE)) %>%
arrange(desc(ASM))

# A tibble: 16 x 2
carrier ASM
<chr> <dbl>

1 UA 15516377526
2 DL 10532885801
3 B6 9618222135
4 AA 3677292231
5 US 2533505829
6 VX 2296680778
7 EV 1817236275
8 WN 1718116857
9 9E 776970310
10 HA 642478122
11 AS 314104736
12 FL 219628520
13 F9 184832280
14 YV 20163632
15 MQ 7162420
16 OO 1299835

Let’s now break this down step-by-step. To compute the available seat miles for a given flight,
we need the distance variable from the flights data frame and the seats variable from the
planes data frame, necessitating a join by the key variable tailnum as illustrated in ?@fig-
reldiagram. To keep the resulting data frame easy to view, we’ll select() only these two
variables and carrier:

461

https://twitter.com/rudeboybert/status/964181298691629056


flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance)

# A tibble: 284,170 x 3
carrier seats distance
<chr> <int> <dbl>

1 UA 149 1400
2 UA 149 1416
3 AA 178 1089
4 B6 200 1576
5 DL 178 762
6 UA 191 719
7 B6 200 1065
8 EV 55 229
9 B6 200 944
10 B6 200 1028
# i 284,160 more rows

Now for each flight we can compute the available seat miles ASM by multiplying the number of
seats by the distance via a mutate():

flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance) %>%
# Added:
mutate(ASM = seats * distance)

# A tibble: 284,170 x 4
carrier seats distance ASM
<chr> <int> <dbl> <dbl>

1 UA 149 1400 208600
2 UA 149 1416 210984
3 AA 178 1089 193842
4 B6 200 1576 315200
5 DL 178 762 135636
6 UA 191 719 137329
7 B6 200 1065 213000
8 EV 55 229 12595
9 B6 200 944 188800
10 B6 200 1028 205600
# i 284,160 more rows

462



Next we want to sum the ASM for each carrier. We achieve this by first grouping by carrier
and then summarizing using the sum() function:

flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance) %>%
mutate(ASM = seats * distance) %>%
# Added:
group_by(carrier) %>%
summarize(ASM = sum(ASM))

# A tibble: 16 x 2
carrier ASM
<chr> <dbl>

1 9E 776970310
2 AA 3677292231
3 AS 314104736
4 B6 9618222135
5 DL 10532885801
6 EV 1817236275
7 F9 184832280
8 FL 219628520
9 HA 642478122
10 MQ 7162420
11 OO 1299835
12 UA 15516377526
13 US 2533505829
14 VX 2296680778
15 WN 1718116857
16 YV 20163632

However, because for certain carriers certain flights have missing NA values, the resulting table
also returns NA’s. We can eliminate these by adding a na.rm = TRUE argument to sum(),
telling R that we want to remove the NA’s in the sum. We saw this in Section -Section 3.3):

flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance) %>%
mutate(ASM = seats * distance) %>%
group_by(carrier) %>%
# Modified:
summarize(ASM = sum(ASM, na.rm = TRUE))

463



# A tibble: 16 x 2
carrier ASM
<chr> <dbl>

1 9E 776970310
2 AA 3677292231
3 AS 314104736
4 B6 9618222135
5 DL 10532885801
6 EV 1817236275
7 F9 184832280
8 FL 219628520
9 HA 642478122
10 MQ 7162420
11 OO 1299835
12 UA 15516377526
13 US 2533505829
14 VX 2296680778
15 WN 1718116857
16 YV 20163632

Finally, we arrange() the data in desc()ending order of ASM.

flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance) %>%
mutate(ASM = seats * distance) %>%
group_by(carrier) %>%
summarize(ASM = sum(ASM, na.rm = TRUE)) %>%
# Added:
arrange(desc(ASM))

# A tibble: 16 x 2
carrier ASM
<chr> <dbl>

1 UA 15516377526
2 DL 10532885801
3 B6 9618222135
4 AA 3677292231
5 US 2533505829
6 VX 2296680778
7 EV 1817236275
8 WN 1718116857

464



9 9E 776970310
10 HA 642478122
11 AS 314104736
12 FL 219628520
13 F9 184832280
14 YV 20163632
15 MQ 7162420
16 OO 1299835

While the above data frame is correct, the IATA carrier code is not always useful. For
example, what carrier is WN? We can address this by joining with the airlines dataset using
carrier is the key variable. While this step is not absolutely required, it goes a long way to
making the table easier to make sense of. It is important to be empathetic with the ultimate
consumers of your presented data!

flights %>%
inner_join(planes, by = "tailnum") %>%
select(carrier, seats, distance) %>%
mutate(ASM = seats * distance) %>%
group_by(carrier) %>%
summarize(ASM = sum(ASM, na.rm = TRUE)) %>%
arrange(desc(ASM)) %>%
# Added:
inner_join(airlines, by = "carrier")

# A tibble: 16 x 3
carrier ASM name
<chr> <dbl> <chr>

1 UA 15516377526 United Air Lines Inc.
2 DL 10532885801 Delta Air Lines Inc.
3 B6 9618222135 JetBlue Airways
4 AA 3677292231 American Airlines Inc.
5 US 2533505829 US Airways Inc.
6 VX 2296680778 Virgin America
7 EV 1817236275 ExpressJet Airlines Inc.
8 WN 1718116857 Southwest Airlines Co.
9 9E 776970310 Endeavor Air Inc.
10 HA 642478122 Hawaiian Airlines Inc.
11 AS 314104736 Alaska Airlines Inc.
12 FL 219628520 AirTran Airways Corporation
13 F9 184832280 Frontier Airlines Inc.
14 YV 20163632 Mesa Airlines Inc.

465



15 MQ 7162420 Envoy Air
16 OO 1299835 SkyWest Airlines Inc.

C.4 Chapter 4 Solutions

library(dplyr)
library(ggplot2)
library(nycflights13)
library(tidyr)
library(readr)
library(fivethirtyeight)

(LC 4.1) What are common characteristics of “tidy” datasets?

Solution: Rows correspond to observations, while columns correspond to variables.

(LC 4.2) What makes “tidy” datasets useful for organizing data?

Solution: Tidy datasets are an organized way of viewing data. This format is required for
the ggplot2 and dplyr packages for data visualization and wrangling.

(LC 4.3) Take a look the airline_safety data frame included in the fivethirtyeight data.
Run the following:

airline_safety

After reading the help file by running ?airline_safety, we see that airline_safety is a
data frame containing information on different airlines companies’ safety records. This data
was originally reported on the data journalism website FiveThirtyEight.com in Nate Silver’s
article “Should Travelers Avoid Flying Airlines That Have Had Crashes in the Past?”. Let’s
ignore the incl_reg_subsidiaries and avail_seat_km_per_week variables for simplicity:

airline_safety_smaller <- airline_safety %>%
select(-c(incl_reg_subsidiaries, avail_seat_km_per_week))

airline_safety_smaller

466

https://fivethirtyeight.com/features/should-travelers-avoid-flying-airlines-that-have-had-crashes-in-the-past/


# A tibble: 56 x 7
airline incidents_85_99 fatal_accidents_85_99 fatalities_85_99
<chr> <int> <int> <int>

1 Aer Lingus 2 0 0
2 Aeroflot 76 14 128
3 Aerolineas Argentinas 6 0 0
4 Aeromexico 3 1 64
5 Air Canada 2 0 0
6 Air France 14 4 79
7 Air India 2 1 329
8 Air New Zealand 3 0 0
9 Alaska Airlines 5 0 0
10 Alitalia 7 2 50
# i 46 more rows
# i 3 more variables: incidents_00_14 <int>, fatal_accidents_00_14 <int>,
# fatalities_00_14 <int>

This data frame is not in “tidy” format. How would you convert this data frame to be in “tidy”
format, in particular so that it has a variable incident_type_years indicating the indicent
type/year and a variable count of the counts?

Solution: Using the gather() function from the tidyr package:

airline_safety_smaller_tidy <- airline_safety_smaller %>%
gather(key = incident_type_years, value = count, -airline)

airline_safety_smaller_tidy

# A tibble: 336 x 3
airline incident_type_years count
<chr> <chr> <int>

1 Aer Lingus incidents_85_99 2
2 Aeroflot incidents_85_99 76
3 Aerolineas Argentinas incidents_85_99 6
4 Aeromexico incidents_85_99 3
5 Air Canada incidents_85_99 2
6 Air France incidents_85_99 14
7 Air India incidents_85_99 2
8 Air New Zealand incidents_85_99 3
9 Alaska Airlines incidents_85_99 5
10 Alitalia incidents_85_99 7
# i 326 more rows

467



If you look at the resulting airline_safety_smaller_tidy data frame in the spread-
sheet viewer, you’ll see that the variable incident_type_years has 6 possible values:
"incidents_85_99", "fatal_accidents_85_99", "fatalities_85_99", "incidents_00_14",
"fatal_accidents_00_14", "fatalities_00_14" corresponding to the 6 columns of
airline_safety_smaller we tidied.

(LC 4.4) Convert the dem_score data frame into a tidy data frame and assign the name of
dem_score_tidy to the resulting long-formatted data frame.

Solution: Running the following in the console:

dem_score <- read_csv("https://moderndive.com/data/dem_score.csv")

Rows: 96 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): country
dbl (9): 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

dem_score_tidy <- dem_score %>%
gather(key = year, value = democracy_score, - country)

Let’s now compare the dem_score and dem_score_tidy. dem_score has democracy score
information for each year in columns, whereas in dem_score_tidy there are explicit variables
year and democracy_score. While both representations of the data contain the same infor-
mation, we can only use ggplot() to create plots using the dem_score_tidy data frame.

dem_score

# A tibble: 96 x 10
country `1952` `1957` `1962` `1967` `1972` `1977` `1982` `1987` `1992`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Albania -9 -9 -9 -9 -9 -9 -9 -9 5
2 Argentina -9 -1 -1 -9 -9 -9 -8 8 7
3 Armenia -9 -7 -7 -7 -7 -7 -7 -7 7
4 Australia 10 10 10 10 10 10 10 10 10
5 Austria 10 10 10 10 10 10 10 10 10
6 Azerbaijan -9 -7 -7 -7 -7 -7 -7 -7 1
7 Belarus -9 -7 -7 -7 -7 -7 -7 -7 7

468



8 Belgium 10 10 10 10 10 10 10 10 10
9 Bhutan -10 -10 -10 -10 -10 -10 -10 -10 -10
10 Bolivia -4 -3 -3 -4 -7 -7 8 9 9
# i 86 more rows

dem_score_tidy

# A tibble: 864 x 3
country year democracy_score
<chr> <chr> <dbl>

1 Albania 1952 -9
2 Argentina 1952 -9
3 Armenia 1952 -9
4 Australia 1952 10
5 Austria 1952 10
6 Azerbaijan 1952 -9
7 Belarus 1952 -9
8 Belgium 1952 10
9 Bhutan 1952 -10
10 Bolivia 1952 -4
# i 854 more rows

(LC 4.5) Read in the life expectancy data stored at https://moderndive.com/data/le_mess.
csv and convert it to a tidy data frame.

Solution: The code is similar

life_expectancy <- read_csv("https://moderndive.com/data/le_mess.csv")
life_expectancy_tidy <- life_expectancy %>%
gather(key = year, value = life_expectancy, -country)

We observe the same construct structure with respect to year in life_expectancy vs
life_expectancy_tidy as we did in dem_score vs dem_score_tidy:

life_expectancy

# A tibble: 202 x 67
country `1951` `1952` `1953` `1954` `1955` `1956` `1957` `1958` `1959` `1960`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Afghan~ 27.1 27.7 28.2 28.7 29.3 29.8 30.3 30.9 31.4 31.9
2 Albania 54.7 55.2 55.8 56.6 57.4 58.4 59.5 60.6 61.8 62.9

469

https://moderndive.com/data/le_mess.csv
https://moderndive.com/data/le_mess.csv


3 Algeria 43.0 43.5 44.0 44.4 44.9 45.4 45.9 46.4 47.0 47.5
4 Angola 31.0 31.6 32.1 32.7 33.2 33.8 34.3 34.9 35.4 36.0
5 Antigu~ 58.3 58.8 59.3 59.9 60.4 60.9 61.4 62.0 62.5 63.0
6 Argent~ 61.9 62.5 63.1 63.6 64.0 64.4 64.7 65 65.2 65.4
7 Armenia 62.7 63.1 63.6 64.1 64.5 65 65.4 65.9 66.4 66.9
8 Aruba 59.0 60.0 61.0 61.9 62.7 63.4 64.1 64.7 65.2 65.7
9 Austra~ 68.7 69.1 69.7 69.8 70.2 70.0 70.3 70.9 70.4 70.9
10 Austria 65.2 66.8 67.3 67.3 67.6 67.7 67.5 68.5 68.4 68.8
# i 192 more rows
# i 56 more variables: `1961` <dbl>, `1962` <dbl>, `1963` <dbl>, `1964` <dbl>,
# `1965` <dbl>, `1966` <dbl>, `1967` <dbl>, `1968` <dbl>, `1969` <dbl>,
# `1970` <dbl>, `1971` <dbl>, `1972` <dbl>, `1973` <dbl>, `1974` <dbl>,
# `1975` <dbl>, `1976` <dbl>, `1977` <dbl>, `1978` <dbl>, `1979` <dbl>,
# `1980` <dbl>, `1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>,
# `1985` <dbl>, `1986` <dbl>, `1987` <dbl>, `1988` <dbl>, `1989` <dbl>, ...

life_expectancy_tidy

# A tibble: 13,332 x 3
country year life_expectancy
<chr> <chr> <dbl>

1 Afghanistan 1951 27.1
2 Albania 1951 54.7
3 Algeria 1951 43.0
4 Angola 1951 31.0
5 Antigua and Barbuda 1951 58.3
6 Argentina 1951 61.9
7 Armenia 1951 62.7
8 Aruba 1951 59.0
9 Australia 1951 68.7
10 Austria 1951 65.2
# i 13,322 more rows

C.5 Chapter 5 Solutions

Upcoming…

470



library(ggplot2)
library(dplyr)
library(moderndive)
library(gapminder)
library(skimr)

471


	Welcome
	License

	Preface
	Introduction for students
	What you will learn from this book
	Data/science pipeline
	Reproducible research


	Getting started
	Getting Started with Data in R
	What are R and RStudio?
	Using RStudio Cloud
	Installing R and RStudio on your personal computer
	Using R via RStudio

	How do I code in R?
	Creating your first Quarto document
	Basic programming concepts and terminology
	Errors, warnings, and messages
	Tips on learning to code

	What are R packages?
	Package installation
	Package loading
	Package use

	Explore your first dataset
	nycflights13 package
	flights data frame
	Exploring data frames
	Help files

	Conclusion
	Additional resources

	Exercises
	Exercises explained
	Conceptual
	Application
	Advanced



	Data Exploration via the tidyverse
	Data Visualization
	Packages Needed
	The Grammar of Graphics
	Components of the Grammar
	Gapminder data
	Other components
	ggplot2 package

	Five Named Graphs - The 5NG
	5NG#1: Scatterplots
	Scatterplots via geom_point
	Over-plotting
	Summary

	5NG#2: Linegraphs
	Linegraphs via geom_line
	Summary

	5NG#3: Histograms
	Histograms via geom_histogram
	Adjusting the bins
	Summary

	Facets
	5NG#4: Boxplots
	Boxplots via geom_boxplot
	Summary

	5NG#5: Barplots
	Barplots via geom_bar or geom_col
	Must avoid pie charts!
	Two categorical variables
	Summary

	Conclusion
	Summary table
	Argument specification
	Additional resources
	What's to come

	Exercises
	Conceptual
	Application
	Advanced


	Data Wrangling
	Packages Needed
	The pipe operator: %>%
	filter() rows
	summarize() variables
	group_by() rows
	Grouping by more than one variable

	mutate existing variables
	arrange() and sort rows
	join data frames
	Matching ``key'' variable names
	Different ``key'' variable names
	Multiple ``key'' variables
	Normal forms

	Other verbs
	select() variables
	rename() variables
	slice() data by a variable

	Conclusion
	Summary table
	Additional resources
	What's to come?

	Exercises
	Conceptual
	Application
	Advanced


	Data Importing & ``Tidy Data''
	Packages Needed
	Importing data
	Using the console
	Using RStudio's interface

	Tidy data
	Definition of ``tidy'' data
	Converting to ``tidy'' data
	nycflights13 package

	Case study: Democracy in Guatemala
	Conclusion
	tidyverse package
	Additional resources
	What's to come?



	Data Modeling
	Basic Regression
	Packages Needed
	One numerical explanatory variable
	Exploratory data analysis
	Simple linear regression
	Observed/fitted values and residuals

	One categorical explanatory variable
	Exploratory data analysis
	Linear regression
	Observed/fitted values and residuals

	Related topics
	Correlation coefficient
	Correlation is not necessarily causation
	Best-fitting line

	Conclusion
	Additional resources
	What's to come?

	Exercises
	Conceptual
	Application
	Advanced


	Multiple Regression
	Needed packages
	Two numerical explanatory variables
	Exploratory data analysis
	Regression plane
	Observed/fitted values and residuals

	One numerical & one categorical explanatory variable
	Exploratory data analysis
	Interaction model
	Parallel slopes model
	Observed/fitted values and residuals

	Related topics
	Model selection
	Correlation coefficient
	Simpson's Paradox

	Conclusion
	What's to come?

	Exercises
	Conceptual
	Application
	Advanced



	Statistical Theory
	Randomization and Causality
	Needed Packages
	Causal Questions
	Randomized experiments
	Random processes in R

	Omitted variables
	The magic of randomization
	Randomization Example
	Estimating the treatment effect

	If you know Z, what about multiple regression?
	What if you don't know Z?
	Conclusion
	Exercises
	Conceptual
	Application
	Advanced


	Populations and Generalizability
	Needed packages
	Terminology & Notation
	Populations & Sampling
	Movies Example
	Research question
	Population of interest
	Development of population frame
	Sampling plan

	Samples from Unclear Populations
	Causality vs. Generalizability
	Exercises
	Conceptual
	Application
	Advanced


	Sampling Distributions
	Needed packages
	Distributions
	Normal Distribution
	Empirical Rule
	Standardization
	T-Distribution
	Normal vs T
	Chi-squared Distribution

	Repeated Sampling
	Theory of Repeated Samples
	Sampling Activity
	Computer simulation

	Properties of Sampling Distributions
	Mean of the sampling distribution
	Standard deviation of the sampling distribution
	Confusing concepts

	Common statistics and their theoretical distributions
	Standard Errors based on Theory

	Sample Size and Sampling Distributions
	Sampling balls with different sized shovels

	Central Limit Theorem (CLT)
	CLT conditions
	CLT example

	Conclusion
	Exercises
	Conceptual
	Application
	Advanced



	Statistical Inference
	Confidence Intervals
	Needed Packages
	Combining an estimate with its precision
	Sampling distributions of standardized statistics
	Confidence Interval with the Normal distribution
	General Form for Constructing a Confidence Interval
	Finding critical values
	Example

	Interpreting a Confidence Interval
	Margin of Error and Width of an Interval
	Example: One proportion
	Observed Statistic

	Example: Comparing two proportions
	Compute the point estimate

	Exercises
	Conceptual
	Application
	Advanced


	P-values
	Packages Needed
	Stochastic Proof by Contradiction
	Repeated samples, the null hypothesis, and p-values
	Null hypothesis
	P-values

	P-value and Null Distribution Example
	IMDB data
	p-values using formulas
	p-values using t.test
	p-values using regression

	Example: Ride-share prices
	Using formulas
	Using t.test
	Using regression

	Interpretation of p-values
	Exercises
	Conceptual
	Application
	Advanced


	Hypothesis tests
	Packages Needed
	Decision making
	Decision making trade-offs
	Medicine
	Law
	Commonalities

	Hypothesis test: Decision making in statistics
	Conducting Hypothesis Tests
	Promotions Example
	Movies example revisited
	Ride share example revisited

	One-tailed hypothesis tests
	Ride share example revisited again
	Formulating the Hypotheses Overview

	More advanced points to consider
	American Statistical Association (ASA) Statistical Standards
	Exercises
	Conceptual
	Application
	Advanced


	Putting it all together
	Packages Needed
	A general process for using statistics
	Example: Treatment effect
	Example: Estimate a proportion
	Example: Estimate the relationship between two variables
	Final thoughts

	References

	Appendices
	Statistical Background
	Common statistical terms
	Mean
	Median
	Standard deviation
	Five-number summary
	Distribution
	Outliers


	Exercise solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Learning check solutions
	Chapter 1 Solutions
	Chapter 2 Solutions
	Chapter 3 Solutions
	Chapter 4 Solutions
	Chapter 5 Solutions



